123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
- # pip install supervisely
- import supervisely_lib as sly
- import numpy as np
- import os
- from PIL import Image
- from tqdm import tqdm
- # Download dataset from <https://supervise.ly/explore/projects/supervisely-person-dataset-23304/datasets>
- project_root = 'PATH_TO/Supervisely Person Dataset' # <-- Configure input
- project = sly.Project(project_root, sly.OpenMode.READ)
- output_path = 'OUTPUT_DIR' # <-- Configure output
- os.makedirs(os.path.join(output_path, 'train', 'src'))
- os.makedirs(os.path.join(output_path, 'train', 'msk'))
- os.makedirs(os.path.join(output_path, 'valid', 'src'))
- os.makedirs(os.path.join(output_path, 'valid', 'msk'))
- max_size = 2048 # <-- Configure max size
- for dataset in project.datasets:
- for item in tqdm(dataset):
- ann = sly.Annotation.load_json_file(dataset.get_ann_path(item), project.meta)
- msk = np.zeros(ann.img_size, dtype=np.uint8)
- for label in ann.labels:
- label.geometry.draw(msk, color=[255])
- msk = Image.fromarray(msk)
-
- img = Image.open(dataset.get_img_path(item)).convert('RGB')
- if img.size[0] > max_size or img.size[1] > max_size:
- scale = max_size / max(img.size)
- img = img.resize((int(img.size[0] * scale), int(img.size[1] * scale)), Image.BILINEAR)
- msk = msk.resize((int(msk.size[0] * scale), int(msk.size[1] * scale)), Image.NEAREST)
-
- img.save(os.path.join(output_path, 'train', 'src', item.replace('.png', '.jpg')))
- msk.save(os.path.join(output_path, 'train', 'msk', item.replace('.png', '.jpg')))
- # Move first 100 to validation set
- names = os.listdir(os.path.join(output_path, 'train', 'src'))
- for name in tqdm(names[:100]):
- os.rename(
- os.path.join(output_path, 'train', 'src', name),
- os.path.join(output_path, 'valid', 'src', name))
- os.rename(
- os.path.join(output_path, 'train', 'msk', name),
- os.path.join(output_path, 'valid', 'msk', name))
|