# pip install supervisely import supervisely_lib as sly import numpy as np import os from PIL import Image from tqdm import tqdm # Download dataset from project_root = 'PATH_TO/Supervisely Person Dataset' # <-- Configure input project = sly.Project(project_root, sly.OpenMode.READ) output_path = 'OUTPUT_DIR' # <-- Configure output os.makedirs(os.path.join(output_path, 'train', 'src')) os.makedirs(os.path.join(output_path, 'train', 'msk')) os.makedirs(os.path.join(output_path, 'valid', 'src')) os.makedirs(os.path.join(output_path, 'valid', 'msk')) max_size = 2048 # <-- Configure max size for dataset in project.datasets: for item in tqdm(dataset): ann = sly.Annotation.load_json_file(dataset.get_ann_path(item), project.meta) msk = np.zeros(ann.img_size, dtype=np.uint8) for label in ann.labels: label.geometry.draw(msk, color=[255]) msk = Image.fromarray(msk) img = Image.open(dataset.get_img_path(item)).convert('RGB') if img.size[0] > max_size or img.size[1] > max_size: scale = max_size / max(img.size) img = img.resize((int(img.size[0] * scale), int(img.size[1] * scale)), Image.BILINEAR) msk = msk.resize((int(msk.size[0] * scale), int(msk.size[1] * scale)), Image.NEAREST) img.save(os.path.join(output_path, 'train', 'src', item.replace('.png', '.jpg'))) msk.save(os.path.join(output_path, 'train', 'msk', item.replace('.png', '.jpg'))) # Move first 100 to validation set names = os.listdir(os.path.join(output_path, 'train', 'src')) for name in tqdm(names[:100]): os.rename( os.path.join(output_path, 'train', 'src', name), os.path.join(output_path, 'valid', 'src', name)) os.rename( os.path.join(output_path, 'train', 'msk', name), os.path.join(output_path, 'valid', 'msk', name))