Няма описание

subDesTagesMitExtraKaese 3588ebcb6b Merge remote-tracking branch 'github/master' преди 2 години
dataset d993eaac3e Publish train scripts преди 3 години
doc 13cb499ece Improve ONNX compatibility преди 3 години
eval 39aabd96fd Add evaluation code преди 3 години
images b14e735b43 Update teaser image преди 3 години
model f09e0931c8 Rename variable to fix torchscript export преди 3 години
.gitignore eace51f63c added start .bat file, fixed divide by zero error преди 3 години
LICENSE d766f5b9c7 Update license преди 3 години
README.md 220003663d Update README.md преди 3 години
data_path.py d993eaac3e Publish train scripts преди 3 години
export_onnx.py 8860031c3e Update comment преди 3 години
export_torchscript.py ee86e2636f Initialize преди 4 години
inference_images.py 3d819586bf Combines PR-#26 and #28 (#29) преди 3 години
inference_speed_test.py 21702785a8 Add argument option for cpu support преди 3 години
inference_utils.py ee86e2636f Initialize преди 4 години
inference_video.py 9c9b9592e8 add option to composite onto a target video with --video-target-bgr преди 3 години
inference_webcam.py fefd275e16 cleaned up cuda conversion преди 3 години
inference_webcam_ts.py fb5961f70b moved cv2_frame_to_cuda to inference_webcam преди 3 години
inference_webcam_ts_compositing.py f0adc6b7a3 removed debug print преди 3 години
requirements.txt ee86e2636f Initialize преди 4 години
run.sh d51f89b7e9 add run script преди 3 години
runCompositing.sh 77f1bc25c2 added webcam inference with compositing преди 3 години
runTS.bat 89e1a401cc added RGB parameter to Background to adjust backgroundcolor Syntax in .bat file: --background-image RGB0:0:0 преди 3 години
runTS.sh a8c25af64d added webcam inference with torch script преди 3 години
train_base.py d993eaac3e Publish train scripts преди 3 години
train_refine.py d993eaac3e Publish train scripts преди 3 години

README.md

Real-Time High-Resolution Background Matting

Teaser

Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires capturing an additional background image and produces state-of-the-art matting results at 4K 30fps and HD 60fps on an Nvidia RTX 2080 TI GPU.

Disclaimer: The video conversion script in this repo is not meant be real-time. Our research's main contribution is the neural architecture for high resolution refinement and the new matting datasets. The inference_speed_test.py script allows you to measure the tensor throughput of our model, which should achieve real-time. The inference_video.py script allows you to test your video on our model, but the video encoding and decoding is done without hardware acceleration and parallization. For production use, you are expected to do additional engineering for hardware encoding/decoding and loading frames to GPU in parallel. For more architecture detail, please refer to our paper.

 

New Paper is Out!

Check out Robust Video Matting! Our new method does not require pre-captured backgrounds, and can inference at even faster speed!

 

Overview

 

Updates

  • [Jun 21 2021] Paper received CVPR 2021 Best Student Paper Honorable Mention.
  • [Apr 21 2021] VideoMatte240K dataset is now published.
  • [Mar 06 2021] Training script is published.
  • [Feb 28 2021] Paper is accepted to CVPR 2021.
  • [Jan 09 2021] PhotoMatte85 dataset is now published.
  • [Dec 21 2020] We updated our project to MIT License, which permits commercial use.

 

Download

Model / Weights

Video / Image Examples

Datasets

 

Demo

Scripts

We provide several scripts in this repo for you to experiment with our model. More detailed instructions are included in the files.

  • inference_images.py: Perform matting on a directory of images.
  • inference_video.py: Perform matting on a video.
  • inference_webcam.py: An interactive matting demo using your webcam.

Notebooks

Additionally, you can try our notebooks in Google Colab for performing matting on images and videos.

Virtual Camera

We provide a demo application that pipes webcam video through our model and outputs to a virtual camera. The script only works on Linux system and can be used in Zoom meetings. For more information, checkout:

 

Usage / Documentation

You can run our model using PyTorch, TorchScript, TensorFlow, and ONNX. For detail about using our model, please check out the Usage / Documentation page.

 

Training

Configure data_path.pth to point to your dataset. The original paper uses train_base.pth to train only the base model till convergence then use train_refine.pth to train the entire network end-to-end. More details are specified in the paper.

 

Project members

* Equal contribution.

 

License

This work is licensed under the MIT License. If you use our work in your project, we would love you to include an acknowledgement and fill out our survey.

Community Projects

Projects developed by third-party developers.