|
@@ -0,0 +1,246 @@
|
|
|
+"""
|
|
|
+Inference on webcams: Use a model on webcam input.
|
|
|
+
|
|
|
+Once launched, the script is in background collection mode.
|
|
|
+Press B to toggle between background capture mode and matting mode. The frame shown when B is pressed is used as background for matting.
|
|
|
+Press Q to exit.
|
|
|
+
|
|
|
+Example:
|
|
|
+
|
|
|
+ python inference_webcam.py \
|
|
|
+ --model-type mattingrefine \
|
|
|
+ --model-backbone resnet50 \
|
|
|
+ --model-checkpoint "PATH_TO_CHECKPOINT" \
|
|
|
+ --resolution 1280 720
|
|
|
+
|
|
|
+"""
|
|
|
+
|
|
|
+import argparse, os, shutil, time
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+
|
|
|
+from PyQt5 import QtGui, QtCore, uic
|
|
|
+from PyQt5 import QtWidgets
|
|
|
+from PyQt5.QtWidgets import QMainWindow, QApplication
|
|
|
+
|
|
|
+from torch import nn
|
|
|
+from torch.utils.data import DataLoader
|
|
|
+from torchvision.transforms import Compose, ToTensor, Resize
|
|
|
+from torchvision.transforms.functional import to_pil_image
|
|
|
+from threading import Thread, Lock, Condition
|
|
|
+from tqdm import tqdm
|
|
|
+from PIL import Image, ImageTk
|
|
|
+
|
|
|
+from dataset import VideoDataset
|
|
|
+from model import MattingBase, MattingRefine
|
|
|
+
|
|
|
+
|
|
|
+# --------------- Arguments ---------------
|
|
|
+
|
|
|
+
|
|
|
+parser = argparse.ArgumentParser(description='Inference from web-cam')
|
|
|
+
|
|
|
+parser.add_argument('--model-type', type=str, required=True, choices=['mattingbase', 'mattingrefine'])
|
|
|
+parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2'])
|
|
|
+parser.add_argument('--model-backbone-scale', type=float, default=0.25)
|
|
|
+parser.add_argument('--model-checkpoint', type=str, required=True)
|
|
|
+parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
|
|
|
+parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000)
|
|
|
+parser.add_argument('--model-refine-threshold', type=float, default=0.7)
|
|
|
+
|
|
|
+parser.add_argument('--hide-fps', action='store_true')
|
|
|
+parser.add_argument('--resolution', type=int, nargs=2, metavar=('width', 'height'), default=(1280, 720))
|
|
|
+
|
|
|
+parser.add_argument('--device-id', type=int, default=0)
|
|
|
+parser.add_argument('--background-image', type=str, default="")
|
|
|
+
|
|
|
+args = parser.parse_args()
|
|
|
+
|
|
|
+
|
|
|
+# ----------- Utility classes -------------
|
|
|
+
|
|
|
+
|
|
|
+# A wrapper that reads data from cv2.VideoCapture in its own thread to optimize.
|
|
|
+# Use .read() in a tight loop to get the newest frame
|
|
|
+class Camera:
|
|
|
+ def __init__(self, device_id=0, width=1280, height=720):
|
|
|
+ self.capture = cv2.VideoCapture(device_id)
|
|
|
+ self.capture.set(cv2.CAP_PROP_FRAME_WIDTH, width)
|
|
|
+ self.capture.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
|
|
|
+ self.width = int(self.capture.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
+ self.height = int(self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
+ # self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2)
|
|
|
+ self.exposure = self.capture.get(cv2.CAP_PROP_EXPOSURE)
|
|
|
+ self.capture.set(cv2.CAP_PROP_BACKLIGHT, 0)
|
|
|
+ self.capture.set(cv2.CAP_PROP_EXPOSURE,self.exposure)
|
|
|
+ self.frameAvailable = False
|
|
|
+ self.success_reading, self.frame = self.capture.read()
|
|
|
+ self.cv = Condition()
|
|
|
+ self.thread = Thread(target=self.__update, args=())
|
|
|
+ self.thread.daemon = True
|
|
|
+ self.thread.start()
|
|
|
+
|
|
|
+ def __update(self):
|
|
|
+ while self.success_reading:
|
|
|
+ grabbed, frame = self.capture.read()
|
|
|
+ with self.cv:
|
|
|
+ self.success_reading = grabbed
|
|
|
+ self.frame = frame
|
|
|
+ self.frameAvailable = True
|
|
|
+ self.cv.notify()
|
|
|
+
|
|
|
+ def brighter(self):
|
|
|
+ if self.exposure < -2:
|
|
|
+ self.exposure += 1
|
|
|
+ self.capture.set(cv2.CAP_PROP_EXPOSURE,self.exposure)
|
|
|
+ print(self.exposure)
|
|
|
+ def darker(self):
|
|
|
+ if self.exposure > -12:
|
|
|
+ self.exposure -= 1
|
|
|
+ self.capture.set(cv2.CAP_PROP_EXPOSURE,self.exposure)
|
|
|
+ print(self.exposure)
|
|
|
+
|
|
|
+ def read(self):
|
|
|
+ with self.cv:
|
|
|
+ self.cv.wait_for(lambda: self.frameAvailable)
|
|
|
+ frame = self.frame.copy()
|
|
|
+ self.frameAvailable = False
|
|
|
+ return frame
|
|
|
+ def __exit__(self, exec_type, exc_value, traceback):
|
|
|
+ self.capture.release()
|
|
|
+
|
|
|
+# An FPS tracker that computes exponentialy moving average FPS
|
|
|
+class FPSTracker:
|
|
|
+ def __init__(self, ratio=0.5):
|
|
|
+ self._last_tick = None
|
|
|
+ self._avg_fps = None
|
|
|
+ self.ratio = ratio
|
|
|
+ def tick(self):
|
|
|
+ if self._last_tick is None:
|
|
|
+ self._last_tick = time.time()
|
|
|
+ return None
|
|
|
+ t_new = time.time()
|
|
|
+ fps_sample = 1.0 / (t_new - self._last_tick)
|
|
|
+ self._avg_fps = self.ratio * fps_sample + (1 - self.ratio) * self._avg_fps if self._avg_fps is not None else fps_sample
|
|
|
+ self._last_tick = t_new
|
|
|
+ return self.get()
|
|
|
+ def get(self):
|
|
|
+ return self._avg_fps
|
|
|
+
|
|
|
+# Wrapper for playing a stream with cv2.imshow(). It can accept an image and return keypress info for basic interactivity.
|
|
|
+# It also tracks FPS and optionally overlays info onto the stream.
|
|
|
+class Displayer(QMainWindow):
|
|
|
+ def __init__(self, title, width, height, show_info=True):
|
|
|
+ self.width, self.height = width, height
|
|
|
+ self.show_info = show_info
|
|
|
+ self.fps_tracker = FPSTracker()
|
|
|
+
|
|
|
+
|
|
|
+ QMainWindow.__init__(self)
|
|
|
+ self.setFixedSize(width, height)
|
|
|
+ self.setAttribute(QtCore.Qt.WA_TranslucentBackground, True)
|
|
|
+
|
|
|
+ self.image_label = QtWidgets.QLabel(self)
|
|
|
+ self.image_label.resize(width, height)
|
|
|
+
|
|
|
+ self.key = None
|
|
|
+
|
|
|
+ def keyPressEvent(self, event):
|
|
|
+ self.key = event.text()
|
|
|
+
|
|
|
+ def closeEvent(self, event):
|
|
|
+ self.key = 'q'
|
|
|
+
|
|
|
+ # Update the currently showing frame and return key press char code
|
|
|
+ def step(self, image):
|
|
|
+ fps_estimate = self.fps_tracker.tick()
|
|
|
+ if self.show_info and fps_estimate is not None:
|
|
|
+ message = f"{int(fps_estimate)} fps | {self.width}x{self.height}"
|
|
|
+ cv2.putText(image, message, (10, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0))
|
|
|
+
|
|
|
+ pix = self.convert_cv_qt(image)
|
|
|
+ self.image_label.setPixmap(pix)
|
|
|
+
|
|
|
+ QApplication.processEvents()
|
|
|
+
|
|
|
+ key = self.key
|
|
|
+ self.key = None
|
|
|
+ return key
|
|
|
+ def convert_cv_qt(self, cv_img):
|
|
|
+ """Convert from an opencv image to QPixmap"""
|
|
|
+ h, w, ch = cv_img.shape
|
|
|
+ bytes_per_line = ch * w
|
|
|
+ if ch == 3:
|
|
|
+ convert_to_Qt_format = QtGui.QImage(cv_img.data, w, h, bytes_per_line, QtGui.QImage.Format_RGB888)
|
|
|
+ elif ch == 4:
|
|
|
+ convert_to_Qt_format = QtGui.QImage(cv_img.data, w, h, bytes_per_line, QtGui.QImage.Format_RGBA8888)
|
|
|
+
|
|
|
+ return QtGui.QPixmap.fromImage(convert_to_Qt_format)
|
|
|
+
|
|
|
+
|
|
|
+# --------------- Main ---------------
|
|
|
+
|
|
|
+model = torch.jit.load(args.model_checkpoint)
|
|
|
+model.backbone_scale = args.model_backbone_scale
|
|
|
+model.refine_mode = args.model_refine_mode
|
|
|
+model.refine_sample_pixels = args.model_refine_sample_pixels
|
|
|
+model.refine_threshold = args.model_refine_threshold
|
|
|
+
|
|
|
+model = model.to(torch.device('cuda'))
|
|
|
+
|
|
|
+width, height = args.resolution
|
|
|
+cam = Camera(device_id=args.device_id,width=width, height=height)
|
|
|
+app = QApplication(['MattingV2'])
|
|
|
+dsp = Displayer('MattingV2', cam.width, cam.height, show_info=(not args.hide_fps))
|
|
|
+dsp.show()
|
|
|
+
|
|
|
+
|
|
|
+def cv2_frame_to_cuda(frame):
|
|
|
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
+ if 'fp16'in args.model_checkpoint:
|
|
|
+ return ToTensor()(Image.fromarray(frame)).unsqueeze_(0).to(torch.float16).cuda()
|
|
|
+ else:
|
|
|
+ return ToTensor()(Image.fromarray(frame)).unsqueeze_(0).to(torch.float32).cuda()
|
|
|
+
|
|
|
+with torch.no_grad():
|
|
|
+ while True:
|
|
|
+ bgr = None
|
|
|
+ while True: # grab bgr
|
|
|
+ frame = cam.read()
|
|
|
+ frameRGB = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
+ key = dsp.step(frameRGB)
|
|
|
+ if key == 'b':
|
|
|
+ bgr = cv2_frame_to_cuda(frame)
|
|
|
+ break
|
|
|
+ elif key == 'w':
|
|
|
+ cam.brighter()
|
|
|
+ elif key == 's':
|
|
|
+ cam.darker()
|
|
|
+ elif key == 'q':
|
|
|
+ exit()
|
|
|
+
|
|
|
+ if args.background_image == "":
|
|
|
+ #green screen
|
|
|
+ bgImage = torch.zeros_like(bgr)
|
|
|
+ bgImage[0,1] = torch.ones_like(bgr[0,0])
|
|
|
+ else:
|
|
|
+ bgImage = cv2.imread(args.background_image, cv2.IMREAD_UNCHANGED)
|
|
|
+ bgImage = cv2.resize(bgImage, (frame.shape[1], frame.shape[0]))
|
|
|
+ bgImage = cv2_frame_to_cuda(bgImage)
|
|
|
+
|
|
|
+ while True: # matting
|
|
|
+ frame = cam.read()
|
|
|
+ src = cv2_frame_to_cuda(frame)
|
|
|
+ pha, fgr = model(src, bgr)[:2]
|
|
|
+ res = pha * fgr + (1 - pha) * bgImage
|
|
|
+ res = res.mul(255).byte().cpu().permute(0, 2, 3, 1).numpy()[0]
|
|
|
+ key = dsp.step(res.copy())
|
|
|
+ if key == 'b':
|
|
|
+ break
|
|
|
+ elif key == 'w':
|
|
|
+ cam.brighter()
|
|
|
+ elif key == 's':
|
|
|
+ cam.darker()
|
|
|
+ elif key == 'q':
|
|
|
+ exit()
|