Sen descrición

Peter Lin b14e735b43 Update teaser image %!s(int64=4) %!d(string=hai) anos
dataset ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
doc ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
images b14e735b43 Update teaser image %!s(int64=4) %!d(string=hai) anos
model ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
README.md b14e735b43 Update teaser image %!s(int64=4) %!d(string=hai) anos
export_onnx.py ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
export_torchscript.py ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
inference_images.py ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
inference_speed_test.py ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
inference_utils.py ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
inference_video.py ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
inference_webcam.py ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos
requirements.txt ee86e2636f Initialize %!s(int64=4) %!d(string=hai) anos

README.md

Real-Time High-Resolution Background Matting

Teaser

Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires capturing an additional background image and produces state-of-the-art matting results at 4K 30fps and HD 60fps on an Nvidia RTX 2080 TI GPU.

 

Overview

 

Download

Model / Weights

Video / Image Examples

Datasets

  • VideoMatte240K (Coming soon)
  • PhotoMatte85 (Coming soon)

 

Demo

Scripts

We provide several scripts in this repo for you to experiment with our model. More detail instructions are included in the files.

  • inference_images.py: Perform matting on a directory of images.
  • inference_video.py: Perform matting on a video.
  • inference_webcam.py: An interactive matting demo using your webcam.

Notebooks

Additionally, you can try our notebooks in Google Colab for performing matting on images and videos.

 

Usage / Documentation

You can run our model using PyTorch, TorchScript, TensorFlow, and ONNX. For detail about using our model, please check out the Usage / Documentation page.

 

Training

Training code will be released upon acceptance of the paper.

 

Project members

* Equal contribution.

 

License

This work is licensed under the Creative Commons Attribution NonCommercial ShareAlike 4.0 License.