123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- import json
- import gzip
- import random
- from datetime import datetime, timedelta
- import colorsys
- from math import radians, cos, sin, asin, sqrt
- from django.contrib.gis.geos import Point, LineString
- from ..models import Marker, Trip
- max_time_diff = timedelta(hours=6)
- max_distance = 3000 # m
- class TripConverter:
- trips: list[Trip]
- def __init__(self, markers: list[Marker]):
- self.trips = []
- first_index = 0
- for i, point in enumerate(markers[1:]):
- prev_point = markers[i-1]
- if point.timestamp - prev_point.timestamp > max_time_diff or \
- Distance(point.location, prev_point.location) > max_distance:
- if i - first_index > 2:
- self.trips.append(create_trip(markers[first_index:i]))
- first_index = i
-
- if first_index < len(markers) - 2:
- self.trips.append(create_trip(markers[first_index:]))
- def save(self):
- for trip in self.trips:
- trip.save()
- def create_trip(markers: list[Marker]) -> Trip:
- print(len(markers), markers[0].timestamp, markers[-1].timestamp)
- trip = Trip.objects.filter(startTime__lte=markers[-1].timestamp, endTime__gte=markers[0].timestamp).first()
- if not trip:
- trip = Trip.objects.create(
- startTime = markers[0].timestamp,
- endTime = markers[-1].timestamp,
- name = f"Trip {markers[0].timestamp}",
- color = get_path_color(markers[0].timestamp)
- )
- elif trip.startTime == markers[0].timestamp and trip.endTime == markers[-1].timestamp:
- data = json.loads(gzip.decompress(trip.path))
- if len(data) > len(markers) * 0.9 and len(data) <= len(markers):
- print("Trip already exists")
- return trip
- trip.startTime = markers[0].timestamp
- trip.endTime = markers[-1].timestamp
- trip.totalTime = trip.endTime - trip.startTime
- center = markers[len(markers)//2].location
- trip.center = Point(center.x, center.y)
- total_distance = 0 # m
- topSpeed = 0 # km/h
- ascendHeight = 0 # m
- descendHeight = 0 # m
- movementTime = timedelta(0)
- minLat = minLon = maxLat = maxLon = None
- lastSpeed = 0
- i = 1
- while i < len(markers):
- point = markers[i]
- prev_point = markers[i-1]
- dist = Distance(point.location, prev_point.location)
- if point.speed is not None and point.speed > 0:
- speed = point.speed
- else:
- speed = dist / abs(point.timestamp - prev_point.timestamp).seconds * 3.6
- if abs(speed - lastSpeed) / abs(point.timestamp - prev_point.timestamp).seconds > 10: # m/s²
- markers.remove(point)
- continue
- if abs(speed - lastSpeed) > 50: # m/s
- markers.remove(point)
- continue
- total_distance += dist
- topSpeed = max(topSpeed, speed)
- minLat = min(minLat, point.location.y) if minLat is not None else point.location.y
- minLon = min(minLon, point.location.x) if minLon is not None else point.location.x
- maxLat = max(maxLat, point.location.y) if maxLat is not None else point.location.y
- maxLon = max(maxLon, point.location.x) if maxLon is not None else point.location.x
-
- if speed > 2.0: # km/h
- movementTime += abs(point.timestamp - prev_point.timestamp)
- if point.alt is not None and prev_point.alt is not None:
- if point.alt > prev_point.alt:
- ascendHeight += point.alt - prev_point.alt
- else:
- descendHeight += prev_point.alt - point.alt
- i += 1
- trip.distance = round(total_distance, 1) # m
- trip.topSpeed = round(topSpeed, 1) # km/h
- trip.avgSpeed = round(total_distance / (movementTime or trip.endTime - trip.startTime).total_seconds() * 3.6, 1) # km/h
- trip.ascendHeight = round(ascendHeight, 1) # m
- trip.descendHeight = round(descendHeight, 1) # m
- trip.movementTime = movementTime
- trip.line = LineString((markers[0].location.x, markers[0].location.y), (markers[-1].location.x, markers[-1].location.y))
- trip.path = points_to_blob(markers)
- return trip
- def Distance(point1: Point, point2: Point) -> float:
- lon1 = radians(point1.x)
- lon2 = radians(point2.x)
- lat1 = radians(point1.y)
- lat2 = radians(point2.y)
-
- # Haversine formula
- dlon = lon2 - lon1
- dlat = lat2 - lat1
- a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
- c = 2 * asin(sqrt(a))
- r = 6371000 # Radius of earth in meters. Use 3956 for miles
- return c * r
- def get_path_color(time: datetime) -> str:
- random.seed(int(time.timestamp()))
- hue = random.random()
- saturation = 0.5 + random.random() / 2
- value = 0.5 + random.random() / 2
- rgb = colorsys.hsv_to_rgb(hue, saturation, value)
- return f"#{int(rgb[0]*255):02x}{int(rgb[1]*255):02x}{int(rgb[2]*255):02x}"
- def convert_points_to_trips():
- points = list(Marker.objects.all())
- converter = TripConverter(points)
- converter.save()
- def points_to_blob(markers) -> bytes:
- arr = []
- for marker in markers:
- arr.append({
- "lat": marker.location.y,
- "lng": marker.location.x,
- "alt": marker.alt,
- "hdop": marker.hdop,
- "speed": marker.speed,
- "timestamp": marker.timestamp.timestamp(),
- })
- data = json.dumps(arr).encode('utf-8')
- return gzip.compress(data)
|