123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- import tempfile
- import ffmpeg
- import asyncio
- import subprocess
- import os
- SAMPLE_RATE = 16000
- def convert_audio(data: bytes, out_filename: str):
- try:
- with tempfile.NamedTemporaryFile("w+b") as file:
- file.write(data)
- file.flush()
- print(f"Converting media {file.name} to {out_filename}")
- out, err = (
- ffmpeg.input(file.name, threads=0)
- .output(out_filename, format="wav", acodec="pcm_s16le", ac=1, ar=SAMPLE_RATE)
- .overwrite_output()
- .run(cmd="ffmpeg", capture_stdout=True, capture_stderr=True, input=data)
- )
- if os.path.getsize(out_filename) == 0:
- print(str(err, "utf-8"))
- raise Exception("Converted file is empty")
- except ffmpeg.Error as e:
- raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
- return out
- MODELS = ["tiny.en", "tiny", "base.en", "base", "small.en", "small", "medium.en", "medium", "large"]
- class ASR():
- def __init__(self, model = "tiny", language = "en"):
- if model not in MODELS:
- raise ValueError(f"Invalid model: {model}. Must be one of {MODELS}")
- self.model = model
- self.language = language
- if os.path.exists(f"/app/ggml-model-whisper-{model}.bin"):
- self.model_path = f"/app/ggml-model-whisper-{model}.bin"
- else:
- self.model_path = f"/data/models/ggml-{model}.bin"
- if not os.path.exists("/data/models"):
- os.mkdir("/data/models")
-
- self.model_url = f"https://huggingface.co/datasets/ggerganov/whisper.cpp/resolve/main/ggml-{self.model}.bin"
- self.lock = asyncio.Lock()
- def load_model(self):
- if not os.path.exists(self.model_path) or os.path.getsize(self.model_path) == 0:
- print("Downloading model...")
- subprocess.run(["wget", self.model_url, "-O", self.model_path], check=True)
- print("Done.")
- async def transcribe(self, audio: bytes) -> str:
- filename = tempfile.mktemp(suffix=".wav")
- convert_audio(audio, filename)
- async with self.lock:
- proc = await asyncio.create_subprocess_exec(
- "./main",
- "-m", self.model_path,
- "-l", self.language,
- "-f", filename,
- "-nt",
- stdout=asyncio.subprocess.PIPE,
- stderr=asyncio.subprocess.PIPE
- )
- stdout, stderr = await proc.communicate()
- os.remove(filename)
- if stderr:
- print(stderr.decode())
-
- text = stdout.decode().strip()
- print(text)
- return text
|