1234567891011121314151617181920212223242526272829303132333435363738394041 |
- import ffmpeg
- import subprocess
- from itertools import takewhile
- import os
- SAMPLE_RATE = 16000
- def convert_audio(data: bytes) -> bytes:
- try:
- # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
- # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
- out, _ = (
- ffmpeg.input("pipe:", threads=0)
- .output("audio.wav", format="wav", acodec="pcm_s16le", ac=1, ar=SAMPLE_RATE)
- .run(cmd="ffmpeg", capture_stdout=True, capture_stderr=True, input=data)
- )
- except ffmpeg.Error as e:
- raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
- return out
- class ASR():
- def __init__(self, model = "tiny"):
- self.model = model
- def transcribe(self, audio: bytes) -> str:
- convert_audio(audio)
- stdout, stderr = subprocess.Popen(
- ["./main", "-m", f"models/ggml-{self.model}.bin", "-f", "audio.wav", "--no_timestamps"],
- stdout=subprocess.PIPE
- ).communicate()
- os.remove("audio.wav")
- if stderr:
- print(stderr.decode())
- lines = stdout.decode().splitlines()[23:]
- print('\n'.join(lines))
- text = takewhile(lambda x: x, lines)
- return '\n'.join(text)
|