import ffmpeg import subprocess import tempfile import numpy as np SAMPLE_RATE = 16000 def convert_audio(data: bytes) -> bytes: try: # This launches a subprocess to decode audio while down-mixing and resampling as necessary. # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. out, _ = ( ffmpeg.input("pipe:", threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=SAMPLE_RATE) .run(cmd="ffmpeg", capture_stdout=True, capture_stderr=True, input=data) ) except ffmpeg.Error as e: raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e return out class ASR(): def __init__(self, model = "tiny"): self.model = model def transcribe(self, audio: bytes) -> str: audio = convert_audio(audio) with tempfile.NamedTemporaryFile("w+b") as file: file.write(audio) file.flush() stdout, stderr = subprocess.Popen( ["./whisper", "-m", f"models/ggml-{self.model}.bin", "-f", file.name], stdout=subprocess.PIPE ).communicate() if stderr: print(stderr.decode()) return stdout.decode()