123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- import openai
- import requests
- import json
- from .logging import Logger
- from typing import Dict, List, Tuple, Generator, Optional
- class OpenAI:
- api_key: str
- chat_model: str = "gpt-3.5-turbo"
- logger: Logger
- api_code: str = "openai"
- @property
- def chat_api(self) -> str:
- return self.chat_model
-
- classification_api = chat_api
- image_api: str = "dalle"
- operator: str = "OpenAI ([https://openai.com](https://openai.com))"
- def __init__(self, api_key, chat_model=None, logger=None):
- self.api_key = api_key
- self.chat_model = chat_model or self.chat_model
- self.logger = logger or Logger()
- def generate_chat_response(self, messages: List[Dict[str, str]], user: Optional[str] = None) -> Tuple[str, int]:
- """Generate a response to a chat message.
- Args:
- messages (List[Dict[str, str]]): A list of messages to use as context.
- Returns:
- Tuple[str, int]: The response text and the number of tokens used.
- """
- self.logger.log(f"Generating response to {len(messages)} messages using {self.chat_model}...")
- response = openai.ChatCompletion.create(
- model=self.chat_model,
- messages=messages,
- api_key=self.api_key,
- user = user
- )
- result_text = response.choices[0].message['content']
- tokens_used = response.usage["total_tokens"]
- self.logger.log(f"Generated response with {tokens_used} tokens.")
- return result_text, tokens_used
- def classify_message(self, query: str, user: Optional[str] = None) -> Tuple[Dict[str, str], int]:
- system_message = """You are a classifier for different types of messages. You decide whether an incoming message is meant to be a prompt for an AI chat model, or meant for a different API. You respond with a JSON object like this:
- { "type": event_type, "prompt": prompt }
- - If the message you received is meant for the AI chat model, the event_type is "chat", and the prompt is the literal content of the message you received. This is also the default if none of the other options apply.
- - If it is a prompt for a calculation that can be answered better by WolframAlpha than an AI chat bot, the event_type is "calculate". Optimize the message you received for input to WolframAlpha, and return it as the prompt attribute.
- - If it is a prompt for an AI image generation, the event_type is "imagine". Optimize the message you received for use with DALL-E, and return it as the prompt attribute.
- - If the user is asking you to create a new room, the event_type is "newroom", and the prompt is the name of the room, if one is given, else an empty string.
- - If the user is asking you to throw a coin, the event_type is "coin". The prompt is an empty string.
- - If the user is asking you to roll a dice, the event_type is "dice". The prompt is an string containing an optional number of sides, if one is given, else an empty string.
- - If for any reason you are unable to classify the message (for example, if it infringes on your terms of service), the event_type is "error", and the prompt is a message explaining why you are unable to process the message.
- Only the event_types mentioned above are allowed, you must not respond in any other way."""
- messages = [
- {
- "role": "system",
- "content": system_message
- },
- {
- "role": "user",
- "content": query
- }
- ]
- self.logger.log(f"Classifying message '{query}'...")
- response = openai.ChatCompletion.create(
- model=self.chat_model,
- messages=messages,
- api_key=self.api_key,
- user = user
- )
- try:
- result = json.loads(response.choices[0].message['content'])
- except:
- result = {"type": "chat", "prompt": query}
- tokens_used = response.usage["total_tokens"]
- self.logger.log(f"Classified message as {result['type']} with {tokens_used} tokens.")
- return result, tokens_used
- def generate_image(self, prompt: str, user: Optional[str] = None) -> Generator[bytes, None, None]:
- """Generate an image from a prompt.
- Args:
- prompt (str): The prompt to use.
- Yields:
- bytes: The image data.
- """
- self.logger.log(f"Generating image from prompt '{prompt}'...")
- response = openai.Image.create(
- prompt=prompt,
- n=1,
- api_key=self.api_key,
- size="1024x1024",
- user = user
- )
- images = []
- for image in response.data:
- image = requests.get(image.url).content
- images.append(image)
- return images, len(images)
|