Browse Source

Initial working version

Kumi 1 year ago
commit
67779b8335
6 changed files with 324 additions and 0 deletions
  1. 5 0
      .gitignore
  2. 19 0
      LICENSE
  3. 32 0
      README.md
  4. 8 0
      config.dist.ini
  5. 256 0
      gptbot.py
  6. 4 0
      requirements.txt

+ 5 - 0
.gitignore

@@ -0,0 +1,5 @@
+*.db
+config.ini
+venv/
+*.pyc
+__pycache__/

+ 19 - 0
LICENSE

@@ -0,0 +1,19 @@
+Copyright (c) 2023 Kumi Mitterer <gptbot@kumi.email>
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.

+ 32 - 0
README.md

@@ -0,0 +1,32 @@
+# GPTbot
+
+GPTbot is a simple bot that uses the [OpenAI ChatCompletion API](https://platform.openai.com/docs/guides/chat)
+to generate responses to messages in a Matrix room.
+
+It will also save a log of the spent tokens to a sqlite database
+(token_usage.db in the working directory).
+
+## Installation
+
+Simply clone this repository and install the requirements.
+
+### Requirements
+
+* Python 3.8 or later
+* Requirements from `requirements.txt` (install with `pip install -r requirements.txt` in a venv)
+
+### Configuration
+
+The bot requires a configuration file to be present in the working directory.
+Copy the provided `config.dist.ini` to `config.ini` and edit it to your needs.
+
+## Running
+
+The bot can be run with `python -m gptbot`. If required, activate a venv first.
+
+You may want to run the bot in a screen or tmux session, or use a process 
+manager like systemd.
+
+## License
+
+This project is licensed under the terms of the MIT license.

+ 8 - 0
config.dist.ini

@@ -0,0 +1,8 @@
+[OpenAI]
+Model = gpt-3.5-turbo
+APIKey = sk-yoursecretkey
+
+[Matrix]
+Homeserver = https://matrix.local
+AccessToken = syt_yoursynapsetoken
+UserID = @gptbot:matrix.local

+ 256 - 0
gptbot.py

@@ -0,0 +1,256 @@
+import sqlite3
+import os
+import inspect
+
+import openai
+import asyncio
+import markdown2
+import tiktoken
+
+from nio import AsyncClient, RoomMessageText, MatrixRoom, Event, InviteEvent
+from nio.api import MessageDirection
+from nio.responses import RoomMessagesError, SyncResponse
+
+from configparser import ConfigParser
+from datetime import datetime
+
+config = ConfigParser()
+config.read("config.ini")
+
+# Set up GPT API
+openai.api_key = config["OpenAI"]["APIKey"]
+MODEL = config["OpenAI"].get("Model", "gpt-3.5-turbo")
+
+# Set up Matrix client
+MATRIX_HOMESERVER = config["Matrix"]["Homeserver"]
+MATRIX_ACCESS_TOKEN = config["Matrix"]["AccessToken"]
+BOT_USER_ID = config["Matrix"]["UserID"]
+
+client = AsyncClient(MATRIX_HOMESERVER, BOT_USER_ID)
+
+SYNC_TOKEN = None
+
+# Set up SQLite3 database
+conn = sqlite3.connect("token_usage.db")
+cursor = conn.cursor()
+cursor.execute(
+    """
+    CREATE TABLE IF NOT EXISTS token_usage (
+        room_id TEXT NOT NULL,
+        tokens INTEGER NOT NULL,
+        timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
+    )
+    """
+)
+conn.commit()
+
+# Define the system message and max token limit
+SYSTEM_MESSAGE = "You are a helpful assistant."
+MAX_TOKENS = 3000
+
+
+def logging(message, log_level="info"):
+    caller = inspect.currentframe().f_back.f_code.co_name
+    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")
+    print(f"[{timestamp} - {caller}] [{log_level.upper()}] {message}")
+
+
+async def gpt_query(messages):
+    logging(f"Querying GPT with {len(messages)} messages")
+    try:
+        response = openai.ChatCompletion.create(
+            model=MODEL,
+            messages=messages
+        )
+        result_text = response.choices[0].message['content']
+        tokens_used = response.usage["total_tokens"]
+        logging(f"Used {tokens_used} tokens")
+        return result_text, tokens_used
+
+    except Exception as e:
+        logging(f"Error during GPT API call: {e}", "error")
+        return None, 0
+
+
+async def fetch_last_n_messages(room_id, n=20):
+    # Fetch the last n messages from the room
+    room = await client.join(room_id)
+    messages = []
+
+    logging(f"Fetching last {n} messages from room {room_id}...")
+
+    response = await client.room_messages(
+        room_id=room_id,
+        start=SYNC_TOKEN,
+        limit=n,
+    )
+
+    if isinstance(response, RoomMessagesError):
+        logging(
+            f"Error fetching messages: {response.message} (status code {response.status_code})", "error")
+        return []
+
+    for event in response.chunk:
+        if isinstance(event, RoomMessageText):
+            messages.append(event)
+
+    logging(f"Found {len(messages)} messages")
+
+    # Reverse the list so that messages are in chronological order
+    return messages[::-1]
+
+
+def truncate_messages_to_fit_tokens(messages, max_tokens=MAX_TOKENS):
+    encoding = tiktoken.encoding_for_model(MODEL)
+    total_tokens = 0
+
+    system_message_tokens = len(encoding.encode(SYSTEM_MESSAGE)) + 1
+
+    if system_message_tokens > max_tokens:
+        logging(
+            f"System message is too long to fit within token limit ({system_message_tokens} tokens) - cannot proceed", "error")
+        return []
+
+    total_tokens += system_message_tokens
+
+    total_tokens = len(SYSTEM_MESSAGE) + 1
+    truncated_messages = []
+
+    for message in messages[0] + reversed(messages[1:]):
+        content = message["content"]
+        tokens = len(encoding.encode(content)) + 1
+        if total_tokens + tokens > max_tokens:
+            break
+        total_tokens += tokens
+        truncated_messages.append(message)
+
+    return list(truncated_messages[0] + reversed(truncated_messages[1:]))
+
+
+async def message_callback(room: MatrixRoom, event: RoomMessageText):
+    logging(f"Received message from {event.sender} in room {room.room_id}")
+
+    if event.sender == BOT_USER_ID:
+        logging("Message is from bot - ignoring")
+        return
+
+    await client.room_typing(room.room_id, True)
+
+    await client.room_read_markers(room.room_id, event.event_id)
+
+    last_messages = await fetch_last_n_messages(room.room_id, 20)
+
+    if not last_messages or all(message.sender == BOT_USER_ID for message in last_messages):
+        logging("No messages to respond to")
+        await client.room_typing(room.room_id, False)
+        return
+
+    chat_messages = [{"role": "system", "content": SYSTEM_MESSAGE}]
+
+    for message in last_messages:
+        role = "assistant" if message.sender == BOT_USER_ID else "user"
+        if not message.event_id == event.event_id:
+            chat_messages.append({"role": role, "content": message.body})
+
+    chat_messages.append({"role": "user", "content": event.body})
+
+    # Truncate messages to fit within the token limit
+    truncated_messages = truncate_messages_to_fit_tokens(
+        chat_messages, MAX_TOKENS - 1)
+
+    response, tokens_used = await gpt_query(truncated_messages)
+
+    if response:
+        # Send the response to the room
+
+        logging(f"Sending response to room {room.room_id}...")
+
+        markdowner = markdown2.Markdown(extras=["fenced-code-blocks"])
+        formatted_body = markdowner.convert(response)
+
+        await client.room_send(
+            room.room_id, "m.room.message", {"msgtype": "m.text", "body": response,
+                                             "format": "org.matrix.custom.html", "formatted_body": formatted_body}
+        )
+
+        logging("Logging tokens used...")
+
+        cursor.execute(
+            "INSERT INTO token_usage (room_id, tokens) VALUES (?, ?)", (room.room_id, tokens_used))
+        conn.commit()
+    else:
+        # Send a notice to the room if there was an error
+
+        logging("Error during GPT API call - sending notice to room")
+
+        await client.room_send(
+            room.room_id, "m.room.message", {
+                "msgtype": "m.notice", "body": "Sorry, I'm having trouble connecting to the GPT API right now. Please try again later."}
+        )
+        print("No response from GPT API")
+
+    await client.room_typing(room.room_id, False)
+
+
+async def room_invite_callback(room: MatrixRoom, event):
+    logging(f"Received invite to room {room.room_id} - joining...")
+
+    await client.join(room.room_id)
+    await client.room_send(
+        room.room_id,
+        "m.room.message",
+        {"msgtype": "m.text",
+            "body": "Hello! I'm a helpful assistant. How can I help you today?"}
+    )
+
+
+async def accept_pending_invites():
+    logging("Accepting pending invites...")
+
+    for room_id in list(client.invited_rooms.keys()):
+        logging(f"Joining room {room_id}...")
+
+        await client.join(room_id)
+        await client.room_send(
+            room_id,
+            "m.room.message",
+            {"msgtype": "m.text",
+                "body": "Hello! I'm a helpful assistant. How can I help you today?"}
+        )
+
+
+async def sync_cb(response):
+    logging(f"Sync response received (next batch: {response.next_batch})")
+    SYNC_TOKEN = response.next_batch
+
+
+async def main():
+    logging("Starting bot...")
+
+    client.access_token = MATRIX_ACCESS_TOKEN  # Set the access token directly
+    client.user_id = BOT_USER_ID  # Set the user_id directly
+
+    client.add_response_callback(sync_cb, SyncResponse)
+
+    logging("Syncing...")
+
+    await client.sync(timeout=30000)
+
+    client.add_event_callback(message_callback, RoomMessageText)
+    client.add_event_callback(room_invite_callback, InviteEvent)
+
+    await accept_pending_invites()  # Accept pending invites
+
+    logging("Bot started")
+
+    try:
+        await client.sync_forever(timeout=30000)  # Continue syncing events
+    finally:
+        await client.close()  # Properly close the aiohttp client session
+        logging("Bot stopped")
+
+if __name__ == "__main__":
+    try:
+        asyncio.run(main())
+    finally:
+        conn.close()

+ 4 - 0
requirements.txt

@@ -0,0 +1,4 @@
+openai
+matrix-nio[e2e]
+markdown2[all]
+tiktoken