123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- import argparse, time
- import cv2
- import torch
- from PyQt5 import QtGui, QtCore, uic
- from PyQt5 import QtWidgets
- from PyQt5.QtWidgets import QMainWindow, QApplication
- from threading import Thread, Lock, Condition
- torch.backends.cudnn.benchmark = True
- # --------------- Arguments ---------------
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description='Inference from web-cam')
- parser.add_argument('--model-backbone', type=str, required=False, choices=['resnet50', 'mobilenetv3'])
- parser.add_argument('--torchscript-file', type=str, required=False, default=None)
- parser.add_argument('--hide-fps', action='store_true')
- parser.add_argument('--resolution', type=int, nargs=2, metavar=('width', 'height'), default=(1280, 720))
- parser.add_argument('--downsampling', type=float, default=0.25)
- parser.add_argument('--device-id', type=int, default=0)
- args = parser.parse_args()
- # ----------- Utility classes -------------
- # A wrapper that reads data from cv2.VideoCapture in its own thread to optimize.
- # Use .read() in a tight loop to get the newest frame
- class Camera:
- def __init__(self, device_id=0, width=1280, height=720):
- self.capture = cv2.VideoCapture(device_id)
- self.capture.set(cv2.CAP_PROP_FRAME_WIDTH, width)
- self.capture.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
- self.width = int(self.capture.get(cv2.CAP_PROP_FRAME_WIDTH))
- self.height = int(self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
- # self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2)
- self.exposure = self.capture.get(cv2.CAP_PROP_EXPOSURE)
- self.capture.set(cv2.CAP_PROP_BACKLIGHT, 0)
- self.capture.set(cv2.CAP_PROP_EXPOSURE,self.exposure)
- self.frameAvailable = False
- self.success_reading, self.frame = self.capture.read()
- self.cv = Condition()
- self.thread = Thread(target=self.__update, args=())
- self.thread.daemon = True
- self.thread.start()
- def __update(self):
- while self.success_reading:
- grabbed, frame = self.capture.read()
- with self.cv:
- self.success_reading = grabbed
- self.frame = frame
- self.frameAvailable = True
- self.cv.notify()
- def brighter(self):
- if self.exposure < -2:
- self.exposure += 1
- self.capture.set(cv2.CAP_PROP_EXPOSURE,self.exposure)
- print(self.exposure)
- def darker(self):
- if self.exposure > -12:
- self.exposure -= 1
- self.capture.set(cv2.CAP_PROP_EXPOSURE,self.exposure)
- print(self.exposure)
- def read(self):
- with self.cv:
- self.cv.wait_for(lambda: self.frameAvailable)
- frame = self.frame.copy()
- self.frameAvailable = False
- return frame
- def __exit__(self, exec_type, exc_value, traceback):
- self.capture.release()
- # An FPS tracker that computes exponentialy moving average FPS
- class FPSTracker:
- def __init__(self, ratio=0.5):
- self._last_tick = None
- self._avg_fps = None
- self.ratio = ratio
- def tick(self):
- if self._last_tick is None:
- self._last_tick = time.time()
- return None
- t_new = time.time()
- fps_sample = 1.0 / (t_new - self._last_tick)
- self._avg_fps = self.ratio * fps_sample + (1 - self.ratio) * self._avg_fps if self._avg_fps is not None else fps_sample
- self._last_tick = t_new
- return self.get()
- def get(self):
- return self._avg_fps
- # Wrapper for playing a stream with cv2.imshow(). It can accept an image and return keypress info for basic interactivity.
- # It also tracks FPS and optionally overlays info onto the stream.
- class Displayer(QMainWindow):
- def __init__(self, title, width, height, show_info=True):
- self.width, self.height = width, height
- self.show_info = show_info
- self.fps_tracker = FPSTracker()
- QMainWindow.__init__(self)
- self.setFixedSize(width, height)
- self.setAttribute(QtCore.Qt.WA_TranslucentBackground, True)
- self.image_label = QtWidgets.QLabel(self)
- self.image_label.resize(width, height)
- self.key = None
- def keyPressEvent(self, event):
- self.key = event.text()
- def closeEvent(self, event):
- self.key = 'q'
-
- # Update the currently showing frame and return key press char code
- def step(self, image):
- fps_estimate = self.fps_tracker.tick()
- if self.show_info and fps_estimate is not None:
- message = f"{int(fps_estimate)} fps | {self.width}x{self.height}"
- cv2.putText(image, message, (10, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0))
-
- pix = self.convert_cv_qt(image)
- self.image_label.setPixmap(pix)
-
- QApplication.processEvents()
- key = self.key
- self.key = None
- return key
- def convert_cv_qt(self, cv_img):
- """Convert from an opencv image to QPixmap"""
- h, w, ch = cv_img.shape
- bytes_per_line = ch * w
- if ch == 3:
- convert_to_Qt_format = QtGui.QImage(cv_img.data, w, h, bytes_per_line, QtGui.QImage.Format_RGB888)
- elif ch == 4:
- convert_to_Qt_format = QtGui.QImage(cv_img.data, w, h, bytes_per_line, QtGui.QImage.Format_RGBA8888)
- return QtGui.QPixmap.fromImage(convert_to_Qt_format)
- def cv2_frame_to_cuda(frame, datatype = torch.float32):
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- return torch.as_tensor(frame).type(datatype).unsqueeze(0).permute(0, 3, 1, 2)/255
- # --------------- Main ---------------
- if __name__ == "__main__":
- if args.torchscript_file:
- model = torch.jit.load(args.torchscript_file)
- model = torch.jit.freeze(model)
- else:
- model = torch.hub.load("PeterL1n/RobustVideoMatting", args.model_backbone)
- if torch.cuda.is_available():
- model = model.cuda().eval()
- datatype = torch.float32
- width, height = args.resolution
- cam = Camera(device_id=args.device_id, width=width, height=height)
- app = QApplication(['RobustVideoMatting'])
- dsp = Displayer('RobustVideoMatting', width, height, show_info=(not args.hide_fps))
- dsp.show()
-
- rec = [None] * 4 # Initial recurrent states.
- with torch.no_grad():
- while True:
- frame = cam.read()
- src = cv2_frame_to_cuda(frame, datatype)
- fgr, pha, *rec = model(src.cuda() if torch.cuda.is_available() else src, *rec, args.downsampling) # Cycle the recurrent states.
- res = pha
- res = res.mul(255).byte().cpu().permute(0, 2, 3, 1).numpy()[0]
- b_channel, g_channel, r_channel = cv2.split(frame)
- img_RGBA = cv2.merge((r_channel, g_channel, b_channel, res))
- key = dsp.step(img_RGBA)
- if key == 'w':
- cam.brighter()
- elif key == 's':
- cam.darker()
- elif key == 'q':
- exit()
|