123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- import os
- import numpy as np
- import random
- import json
- import os
- from torch.utils.data import Dataset
- from torchvision import transforms
- from torchvision.transforms import functional as F
- from PIL import Image
- class CocoPanopticDataset(Dataset):
- def __init__(self,
- imgdir: str,
- anndir: str,
- annfile: str,
- transform=None):
- with open(annfile) as f:
- self.data = json.load(f)['annotations']
- self.data = list(filter(lambda data: any(info['category_id'] == 1 for info in data['segments_info']), self.data))
- self.imgdir = imgdir
- self.anndir = anndir
- self.transform = transform
-
- def __len__(self):
- return len(self.data)
-
- def __getitem__(self, idx):
- data = self.data[idx]
- img = self._load_img(data)
- seg = self._load_seg(data)
-
- if self.transform is not None:
- img, seg = self.transform(img, seg)
-
- return img, seg
- def _load_img(self, data):
- with Image.open(os.path.join(self.imgdir, data['file_name'].replace('.png', '.jpg'))) as img:
- return img.convert('RGB')
-
- def _load_seg(self, data):
- with Image.open(os.path.join(self.anndir, data['file_name'])) as ann:
- ann.load()
-
- ann = np.array(ann, copy=False).astype(np.int32)
- ann = ann[:, :, 0] + 256 * ann[:, :, 1] + 256 * 256 * ann[:, :, 2]
- seg = np.zeros(ann.shape, np.uint8)
-
- for segments_info in data['segments_info']:
- if segments_info['category_id'] in [1, 27, 32]: # person, backpack, tie
- seg[ann == segments_info['id']] = 255
-
- return Image.fromarray(seg)
-
- class CocoPanopticTrainAugmentation:
- def __init__(self, size):
- self.size = size
- self.jitter = transforms.ColorJitter(0.1, 0.1, 0.1, 0.1)
-
- def __call__(self, img, seg):
- # Affine
- params = transforms.RandomAffine.get_params(degrees=(-20, 20), translate=(0.1, 0.1),
- scale_ranges=(1, 1), shears=(-10, 10), img_size=img.size)
- img = F.affine(img, *params, interpolation=F.InterpolationMode.BILINEAR)
- seg = F.affine(seg, *params, interpolation=F.InterpolationMode.NEAREST)
-
- # Resize
- params = transforms.RandomResizedCrop.get_params(img, scale=(0.5, 1), ratio=(0.7, 1.3))
- img = F.resized_crop(img, *params, self.size, interpolation=F.InterpolationMode.BILINEAR)
- seg = F.resized_crop(seg, *params, self.size, interpolation=F.InterpolationMode.NEAREST)
-
- # Horizontal flip
- if random.random() < 0.5:
- img = F.hflip(img)
- seg = F.hflip(seg)
-
- # Color jitter
- img = self.jitter(img)
-
- # To tensor
- img = F.to_tensor(img)
- seg = F.to_tensor(seg)
-
- return img, seg
-
- class CocoPanopticValidAugmentation:
- def __init__(self, size):
- self.size = size
-
- def __call__(self, img, seg):
- # Resize
- params = transforms.RandomResizedCrop.get_params(img, scale=(1, 1), ratio=(1., 1.))
- img = F.resized_crop(img, *params, self.size, interpolation=F.InterpolationMode.BILINEAR)
- seg = F.resized_crop(seg, *params, self.size, interpolation=F.InterpolationMode.NEAREST)
-
- # To tensor
- img = F.to_tensor(img)
- seg = F.to_tensor(seg)
-
- return img, seg
|