# 稳定视频抠像 (RVM) ![Teaser](/documentation/image/teaser.gif)

English | 中文

论文 [Robust High-Resolution Video Matting with Temporal Guidance](https://peterl1n.github.io/RobustVideoMatting/) 的官方 GitHub 库。RVM 专为稳定人物视频抠像设计。不同于现有神经网络将每一帧作为单独图片处理,RVM 使用循环神经网络,在处理视频流时有时间记忆。RVM 可在任意视频上做实时高清抠像。在 Nvidia GTX 1080Ti 上实现 **4K 76FPS** 和 **HD 104FPS**。此研究项目来自[字节跳动](https://www.bytedance.com/)。
## 更新 * [2021年11月3日] 修复了 [train.py](https://github.com/PeterL1n/RobustVideoMatting/commit/48effc91576a9e0e7a8519f3da687c0d3522045f) 的 bug。 * [2021年9月16日] 代码重新以 GPL-3.0 许可发布。 * [2021年8月25日] 公开代码和模型。 * [2021年7月27日] 论文被 WACV 2022 收录。
## 展示视频 观看展示视频 ([YouTube](https://youtu.be/Jvzltozpbpk), [Bilibili](https://www.bilibili.com/video/BV1Z3411B7g7/)),了解模型能力。

视频中的所有素材都提供下载,可用于测试模型:[Google Drive](https://drive.google.com/drive/folders/1VFnWwuu-YXDKG-N6vcjK_nL7YZMFapMU?usp=sharing)
## Demo * [网页](https://peterl1n.github.io/RobustVideoMatting/#/demo): 在浏览器里看摄像头抠像效果,展示模型内部循环记忆值。 * [Colab](https://colab.research.google.com/drive/10z-pNKRnVNsp0Lq9tH1J_XPZ7CBC_uHm?usp=sharing): 用我们的模型转换你的视频。
## 下载 推荐在通常情况下使用 MobileNetV3 的模型。ResNet50 的模型大很多,效果稍有提高。我们的模型支持很多框架。详情请阅读[推断文档](documentation/inference_zh_Hans.md)。
框架 下载 备注
PyTorch rvm_mobilenetv3.pth
rvm_resnet50.pth
官方 PyTorch 模型权值。文档
TorchHub 无需手动下载。 更方便地在你的 PyTorch 项目里使用此模型。文档
TorchScript rvm_mobilenetv3_fp32.torchscript
rvm_mobilenetv3_fp16.torchscript
rvm_resnet50_fp32.torchscript
rvm_resnet50_fp16.torchscript
若需在移动端推断,可以考虑自行导出 int8 量化的模型。文档
ONNX rvm_mobilenetv3_fp32.onnx
rvm_mobilenetv3_fp16.onnx
rvm_resnet50_fp32.onnx
rvm_resnet50_fp16.onnx
在 ONNX Runtime 的 CPU 和 CUDA backend 上测试过。提供的模型用 opset 12。文档导出
TensorFlow rvm_mobilenetv3_tf.zip
rvm_resnet50_tf.zip
TensorFlow 2 SavedModel 格式。文档
TensorFlow.js rvm_mobilenetv3_tfjs_int8.zip
在网页上跑模型。展示示范代码
CoreML rvm_mobilenetv3_1280x720_s0.375_fp16.mlmodel
rvm_mobilenetv3_1280x720_s0.375_int8.mlmodel
rvm_mobilenetv3_1920x1080_s0.25_fp16.mlmodel
rvm_mobilenetv3_1920x1080_s0.25_int8.mlmodel
CoreML 只能导出固定分辨率,其他分辨率可自行导出。支持 iOS 13+。s 代表下采样比。文档导出
所有模型可在 [Google Drive](https://drive.google.com/drive/folders/1pBsG-SCTatv-95SnEuxmnvvlRx208VKj?usp=sharing) 或[百度网盘](https://pan.baidu.com/s/1puPSxQqgBFOVpW4W7AolkA)(密码: gym7)上下载。
## PyTorch 范例 1. 安装 Python 库: ```sh pip install -r requirements_inference.txt ``` 2. 加载模型: ```python import torch from model import MattingNetwork model = MattingNetwork('mobilenetv3').eval().cuda() # 或 "resnet50" model.load_state_dict(torch.load('rvm_mobilenetv3.pth')) ``` 3. 若只需要做视频抠像处理,我们提供简单的 API: ```python from inference import convert_video convert_video( model, # 模型,可以加载到任何设备(cpu 或 cuda) input_source='input.mp4', # 视频文件,或图片序列文件夹 output_type='video', # 可选 "video"(视频)或 "png_sequence"(PNG 序列) output_composition='com.mp4', # 若导出视频,提供文件路径。若导出 PNG 序列,提供文件夹路径 output_alpha="pha.mp4", # [可选项] 输出透明度预测 output_foreground="fgr.mp4", # [可选项] 输出前景预测 output_video_mbps=4, # 若导出视频,提供视频码率 downsample_ratio=None, # 下采样比,可根据具体视频调节,或 None 选择自动 seq_chunk=12, # 设置多帧并行计算 ) ``` 4. 或自己写推断逻辑: ```python from torch.utils.data import DataLoader from torchvision.transforms import ToTensor from inference_utils import VideoReader, VideoWriter reader = VideoReader('input.mp4', transform=ToTensor()) writer = VideoWriter('output.mp4', frame_rate=30) bgr = torch.tensor([.47, 1, .6]).view(3, 1, 1).cuda() # 绿背景 rec = [None] * 4 # 初始循环记忆(Recurrent States) downsample_ratio = 0.25 # 下采样比,根据视频调节 with torch.no_grad(): for src in DataLoader(reader): # 输入张量,RGB通道,范围为 0~1 fgr, pha, *rec = model(src.cuda(), *rec, downsample_ratio) # 将上一帧的记忆给下一帧 com = fgr * pha + bgr * (1 - pha) # 将前景合成到绿色背景 writer.write(com) # 输出帧 ``` 5. 模型和 API 也可通过 TorchHub 快速载入。 ```python # 加载模型 model = torch.hub.load("PeterL1n/RobustVideoMatting", "mobilenetv3") # 或 "resnet50" # 转换 API convert_video = torch.hub.load("PeterL1n/RobustVideoMatting", "converter") ``` [推断文档](documentation/inference_zh_Hans.md)里有对 `downsample_ratio` 参数,API 使用,和高阶使用的讲解。
## 训练和评估 请参照[训练文档(英文)](documentation/training.md)。
## 速度 速度用 `inference_speed_test.py` 测量以供参考。 | GPU | dType | HD (1920x1080) | 4K (3840x2160) | | -------------- | ----- | -------------- |----------------| | RTX 3090 | FP16 | 172 FPS | 154 FPS | | RTX 2060 Super | FP16 | 134 FPS | 108 FPS | | GTX 1080 Ti | FP32 | 104 FPS | 74 FPS | * 注释1:HD 使用 `downsample_ratio=0.25`,4K 使用 `downsample_ratio=0.125`。 所有测试都使用 batch size 1 和 frame chunk 1。 * 注释2:图灵架构之前的 GPU 不支持 FP16 推理,所以 GTX 1080 Ti 使用 FP32。 * 注释3:我们只测量张量吞吐量(tensor throughput)。 提供的视频转换脚本会慢得多,因为它不使用硬件视频编码/解码,也没有在并行线程上完成张量传输。如果您有兴趣在 Python 中实现硬件视频编码/解码,请参考 [PyNvCodec](https://github.com/NVIDIA/VideoProcessingFramework)。
## 项目成员 * [Shanchuan Lin](https://www.linkedin.com/in/shanchuanlin/) * [Linjie Yang](https://sites.google.com/site/linjieyang89/) * [Imran Saleemi](https://www.linkedin.com/in/imran-saleemi/) * [Soumyadip Sengupta](https://homes.cs.washington.edu/~soumya91/)
## 第三方资源 * [NCNN C++ Android](https://github.com/FeiGeChuanShu/ncnn_Android_RobustVideoMatting) ([@FeiGeChuanShu](https://github.com/FeiGeChuanShu)) * [lite.ai.toolkit](https://github.com/DefTruth/RobustVideoMatting.lite.ai.toolkit) ([@DefTruth](https://github.com/DefTruth)) * [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Robust-Video-Matting) ([@AK391](https://github.com/AK391)) * [带有 NatML 的 Unity 引擎](https://hub.natml.ai/@natsuite/robust-video-matting) ([@natsuite](https://github.com/natsuite)) * [MNN C++ Demo](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_rvm.cpp) ([@DefTruth](https://github.com/DefTruth)) * [TNN C++ Demo](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_rvm.cpp) ([@DefTruth](https://github.com/DefTruth))