import torch from torch import Tensor from torch import nn from torch.nn import functional as F from typing import Tuple, Optional class RecurrentDecoder(nn.Module): def __init__(self, feature_channels, decoder_channels): super().__init__() self.avgpool = AvgPool() self.decode4 = BottleneckBlock(feature_channels[3]) self.decode3 = UpsamplingBlock(feature_channels[3], feature_channels[2], 3, decoder_channels[0]) self.decode2 = UpsamplingBlock(decoder_channels[0], feature_channels[1], 3, decoder_channels[1]) self.decode1 = UpsamplingBlock(decoder_channels[1], feature_channels[0], 3, decoder_channels[2]) self.decode0 = OutputBlock(decoder_channels[2], 3, decoder_channels[3]) def forward(self, s0: Tensor, f1: Tensor, f2: Tensor, f3: Tensor, f4: Tensor, r1: Optional[Tensor], r2: Optional[Tensor], r3: Optional[Tensor], r4: Optional[Tensor]): s1, s2, s3 = self.avgpool(s0) x4, r4 = self.decode4(f4, r4) x3, r3 = self.decode3(x4, f3, s3, r3) x2, r2 = self.decode2(x3, f2, s2, r2) x1, r1 = self.decode1(x2, f1, s1, r1) x0 = self.decode0(x1, s0) return x0, r1, r2, r3, r4 class AvgPool(nn.Module): def __init__(self): super().__init__() self.avgpool = nn.AvgPool2d(2, 2, count_include_pad=False, ceil_mode=True) def forward_single_frame(self, s0): s1 = self.avgpool(s0) s2 = self.avgpool(s1) s3 = self.avgpool(s2) return s1, s2, s3 def forward_time_series(self, s0): B, T = s0.shape[:2] s0 = s0.flatten(0, 1) s1, s2, s3 = self.forward_single_frame(s0) s1 = s1.unflatten(0, (B, T)) s2 = s2.unflatten(0, (B, T)) s3 = s3.unflatten(0, (B, T)) return s1, s2, s3 def forward(self, s0): if s0.ndim == 5: return self.forward_time_series(s0) else: return self.forward_single_frame(s0) class BottleneckBlock(nn.Module): def __init__(self, channels): super().__init__() self.channels = channels self.gru = ConvGRU(channels // 2) def forward(self, x, r: Optional[Tensor]): a, b = x.split(self.channels // 2, dim=-3) b, r = self.gru(b, r) x = torch.cat([a, b], dim=-3) return x, r class UpsamplingBlock(nn.Module): def __init__(self, in_channels, skip_channels, src_channels, out_channels): super().__init__() self.out_channels = out_channels self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) self.conv = nn.Sequential( nn.Conv2d(in_channels + skip_channels + src_channels, out_channels, 3, 1, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True), ) self.gru = ConvGRU(out_channels // 2) def forward_single_frame(self, x, f, s, r: Optional[Tensor]): x = self.upsample(x) # Optimized for CoreML export if x.size(2) != s.size(2): x = x[:, :, :s.size(2), :] if x.size(3) != s.size(3): x = x[:, :, :, :s.size(3)] x = torch.cat([x, f, s], dim=1) x = self.conv(x) a, b = x.split(self.out_channels // 2, dim=1) b, r = self.gru(b, r) x = torch.cat([a, b], dim=1) return x, r def forward_time_series(self, x, f, s, r: Optional[Tensor]): B, T, _, H, W = s.shape x = x.flatten(0, 1) f = f.flatten(0, 1) s = s.flatten(0, 1) x = self.upsample(x) x = x[:, :, :H, :W] x = torch.cat([x, f, s], dim=1) x = self.conv(x) x = x.unflatten(0, (B, T)) a, b = x.split(self.out_channels // 2, dim=2) b, r = self.gru(b, r) x = torch.cat([a, b], dim=2) return x, r def forward(self, x, f, s, r: Optional[Tensor]): if x.ndim == 5: return self.forward_time_series(x, f, s, r) else: return self.forward_single_frame(x, f, s, r) class OutputBlock(nn.Module): def __init__(self, in_channels, src_channels, out_channels): super().__init__() self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) self.conv = nn.Sequential( nn.Conv2d(in_channels + src_channels, out_channels, 3, 1, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True), nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True), ) def forward_single_frame(self, x, s): x = self.upsample(x) if x.size(2) != s.size(2): x = x[:, :, :s.size(2), :] if x.size(3) != s.size(3): x = x[:, :, :, :s.size(3)] x = torch.cat([x, s], dim=1) x = self.conv(x) return x def forward_time_series(self, x, s): B, T, _, H, W = s.shape x = x.flatten(0, 1) s = s.flatten(0, 1) x = self.upsample(x) x = x[:, :, :H, :W] x = torch.cat([x, s], dim=1) x = self.conv(x) x = x.unflatten(0, (B, T)) return x def forward(self, x, s): if x.ndim == 5: return self.forward_time_series(x, s) else: return self.forward_single_frame(x, s) class ConvGRU(nn.Module): def __init__(self, channels: int, kernel_size: int = 3, padding: int = 1): super().__init__() self.channels = channels self.ih = nn.Sequential( nn.Conv2d(channels * 2, channels * 2, kernel_size, padding=padding), nn.Sigmoid() ) self.hh = nn.Sequential( nn.Conv2d(channels * 2, channels, kernel_size, padding=padding), nn.Tanh() ) def forward_single_frame(self, x, h): r, z = self.ih(torch.cat([x, h], dim=1)).split(self.channels, dim=1) c = self.hh(torch.cat([x, r * h], dim=1)) h = (1 - z) * h + z * c return h, h def forward_time_series(self, x, h): o = [] for xt in x.unbind(dim=1): ot, h = self.forward_single_frame(xt, h) o.append(ot) o = torch.stack(o, dim=1) return o, h def forward(self, x, h: Optional[Tensor]): if h is None: h = torch.zeros((x.size(0), x.size(-3), x.size(-2), x.size(-1)), device=x.device, dtype=x.dtype) if x.ndim == 5: return self.forward_time_series(x, h) else: return self.forward_single_frame(x, h) class Projection(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, 1) def forward_single_frame(self, x): return self.conv(x) def forward_time_series(self, x): B, T = x.shape[:2] return self.conv(x.flatten(0, 1)).unflatten(0, (B, T)) def forward(self, x): if x.ndim == 5: return self.forward_time_series(x) else: return self.forward_single_frame(x)