|
@@ -0,0 +1,192 @@
|
|
|
+import argparse, time
|
|
|
+import cv2
|
|
|
+import torch
|
|
|
+
|
|
|
+from PyQt5 import QtGui, QtCore, uic
|
|
|
+from PyQt5 import QtWidgets
|
|
|
+from PyQt5.QtWidgets import QMainWindow, QApplication
|
|
|
+
|
|
|
+from threading import Thread, Lock, Condition
|
|
|
+
|
|
|
+
|
|
|
+torch.backends.cudnn.benchmark = True
|
|
|
+
|
|
|
+
|
|
|
+# --------------- Arguments ---------------
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ parser = argparse.ArgumentParser(description='Inference from web-cam')
|
|
|
+
|
|
|
+ parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet50', 'mobilenetv3'])
|
|
|
+
|
|
|
+ parser.add_argument('--hide-fps', action='store_true')
|
|
|
+ parser.add_argument('--resolution', type=int, nargs=2, metavar=('width', 'height'), default=(1280, 720))
|
|
|
+ parser.add_argument('--downsampling', type=float, default=0.25)
|
|
|
+
|
|
|
+ parser.add_argument('--device-id', type=int, default=0)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+
|
|
|
+# ----------- Utility classes -------------
|
|
|
+
|
|
|
+
|
|
|
+# A wrapper that reads data from cv2.VideoCapture in its own thread to optimize.
|
|
|
+# Use .read() in a tight loop to get the newest frame
|
|
|
+class Camera:
|
|
|
+ def __init__(self, device_id=0, width=1280, height=720):
|
|
|
+ self.capture = cv2.VideoCapture(device_id)
|
|
|
+ self.capture.set(cv2.CAP_PROP_FRAME_WIDTH, width)
|
|
|
+ self.capture.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
|
|
|
+ self.width = int(self.capture.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
+ self.height = int(self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
+ # self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2)
|
|
|
+ self.exposure = self.capture.get(cv2.CAP_PROP_EXPOSURE)
|
|
|
+ self.capture.set(cv2.CAP_PROP_BACKLIGHT, 0)
|
|
|
+ self.capture.set(cv2.CAP_PROP_EXPOSURE,self.exposure)
|
|
|
+ self.frameAvailable = False
|
|
|
+ self.success_reading, self.frame = self.capture.read()
|
|
|
+ self.cv = Condition()
|
|
|
+ self.thread = Thread(target=self.__update, args=())
|
|
|
+ self.thread.daemon = True
|
|
|
+ self.thread.start()
|
|
|
+
|
|
|
+ def __update(self):
|
|
|
+ while self.success_reading:
|
|
|
+ grabbed, frame = self.capture.read()
|
|
|
+ with self.cv:
|
|
|
+ self.success_reading = grabbed
|
|
|
+ self.frame = frame
|
|
|
+ self.frameAvailable = True
|
|
|
+ self.cv.notify()
|
|
|
+
|
|
|
+ def brighter(self):
|
|
|
+ if self.exposure < -2:
|
|
|
+ self.exposure += 1
|
|
|
+ self.capture.set(cv2.CAP_PROP_EXPOSURE,self.exposure)
|
|
|
+ print(self.exposure)
|
|
|
+ def darker(self):
|
|
|
+ if self.exposure > -12:
|
|
|
+ self.exposure -= 1
|
|
|
+ self.capture.set(cv2.CAP_PROP_EXPOSURE,self.exposure)
|
|
|
+ print(self.exposure)
|
|
|
+
|
|
|
+ def read(self):
|
|
|
+ with self.cv:
|
|
|
+ self.cv.wait_for(lambda: self.frameAvailable)
|
|
|
+ frame = self.frame.copy()
|
|
|
+ self.frameAvailable = False
|
|
|
+ return frame
|
|
|
+ def __exit__(self, exec_type, exc_value, traceback):
|
|
|
+ self.capture.release()
|
|
|
+
|
|
|
+# An FPS tracker that computes exponentialy moving average FPS
|
|
|
+class FPSTracker:
|
|
|
+ def __init__(self, ratio=0.5):
|
|
|
+ self._last_tick = None
|
|
|
+ self._avg_fps = None
|
|
|
+ self.ratio = ratio
|
|
|
+ def tick(self):
|
|
|
+ if self._last_tick is None:
|
|
|
+ self._last_tick = time.time()
|
|
|
+ return None
|
|
|
+ t_new = time.time()
|
|
|
+ fps_sample = 1.0 / (t_new - self._last_tick)
|
|
|
+ self._avg_fps = self.ratio * fps_sample + (1 - self.ratio) * self._avg_fps if self._avg_fps is not None else fps_sample
|
|
|
+ self._last_tick = t_new
|
|
|
+ return self.get()
|
|
|
+ def get(self):
|
|
|
+ return self._avg_fps
|
|
|
+
|
|
|
+# Wrapper for playing a stream with cv2.imshow(). It can accept an image and return keypress info for basic interactivity.
|
|
|
+# It also tracks FPS and optionally overlays info onto the stream.
|
|
|
+class Displayer(QMainWindow):
|
|
|
+ def __init__(self, title, width, height, show_info=True):
|
|
|
+ self.width, self.height = width, height
|
|
|
+ self.show_info = show_info
|
|
|
+ self.fps_tracker = FPSTracker()
|
|
|
+
|
|
|
+
|
|
|
+ QMainWindow.__init__(self)
|
|
|
+ self.setFixedSize(width, height)
|
|
|
+ self.setAttribute(QtCore.Qt.WA_TranslucentBackground, True)
|
|
|
+
|
|
|
+ self.image_label = QtWidgets.QLabel(self)
|
|
|
+ self.image_label.resize(width, height)
|
|
|
+
|
|
|
+ self.key = None
|
|
|
+
|
|
|
+ def keyPressEvent(self, event):
|
|
|
+ self.key = event.text()
|
|
|
+
|
|
|
+ def closeEvent(self, event):
|
|
|
+ self.key = 'q'
|
|
|
+
|
|
|
+ # Update the currently showing frame and return key press char code
|
|
|
+ def step(self, image):
|
|
|
+ fps_estimate = self.fps_tracker.tick()
|
|
|
+ if self.show_info and fps_estimate is not None:
|
|
|
+ message = f"{int(fps_estimate)} fps | {self.width}x{self.height}"
|
|
|
+ cv2.putText(image, message, (10, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0))
|
|
|
+
|
|
|
+ pix = self.convert_cv_qt(image)
|
|
|
+ self.image_label.setPixmap(pix)
|
|
|
+
|
|
|
+ QApplication.processEvents()
|
|
|
+
|
|
|
+ key = self.key
|
|
|
+ self.key = None
|
|
|
+ return key
|
|
|
+ def convert_cv_qt(self, cv_img):
|
|
|
+ """Convert from an opencv image to QPixmap"""
|
|
|
+ h, w, ch = cv_img.shape
|
|
|
+ bytes_per_line = ch * w
|
|
|
+ if ch == 3:
|
|
|
+ convert_to_Qt_format = QtGui.QImage(cv_img.data, w, h, bytes_per_line, QtGui.QImage.Format_RGB888)
|
|
|
+ elif ch == 4:
|
|
|
+ convert_to_Qt_format = QtGui.QImage(cv_img.data, w, h, bytes_per_line, QtGui.QImage.Format_RGBA8888)
|
|
|
+
|
|
|
+ return QtGui.QPixmap.fromImage(convert_to_Qt_format)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+def cv2_frame_to_cuda(frame, datatype = torch.float32):
|
|
|
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
+ return torch.as_tensor(frame).type(datatype).unsqueeze(0).permute(0, 3, 1, 2)/255
|
|
|
+
|
|
|
+# --------------- Main ---------------
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+
|
|
|
+ model = torch.hub.load("PeterL1n/RobustVideoMatting", args.model_backbone)
|
|
|
+ use_cuda = True
|
|
|
+ try:
|
|
|
+ model = model.cuda().eval()
|
|
|
+ except AssertionError:
|
|
|
+ use_cuda = False
|
|
|
+ datatype = torch.float32
|
|
|
+
|
|
|
+ width, height = args.resolution
|
|
|
+ cam = Camera(device_id=args.device_id, width=width, height=height)
|
|
|
+ app = QApplication(['RobustVideoMatting'])
|
|
|
+ dsp = Displayer('RobustVideoMatting', width, height, show_info=(not args.hide_fps))
|
|
|
+ dsp.show()
|
|
|
+
|
|
|
+ rec = [None] * 4 # Initial recurrent states.
|
|
|
+
|
|
|
+ with torch.no_grad():
|
|
|
+ while True:
|
|
|
+ frame = cam.read()
|
|
|
+ src = cv2_frame_to_cuda(frame, datatype)
|
|
|
+ fgr, pha, *rec = model(src.cuda() if use_cuda else src, *rec, args.downsampling) # Cycle the recurrent states.
|
|
|
+ res = pha
|
|
|
+ res = res.mul(255).byte().cpu().permute(0, 2, 3, 1).numpy()[0]
|
|
|
+ b_channel, g_channel, r_channel = cv2.split(frame)
|
|
|
+ img_RGBA = cv2.merge((r_channel, g_channel, b_channel, res))
|
|
|
+ key = dsp.step(img_RGBA)
|
|
|
+ if key == 'w':
|
|
|
+ cam.brighter()
|
|
|
+ elif key == 's':
|
|
|
+ cam.darker()
|
|
|
+ elif key == 'q':
|
|
|
+ exit()
|