123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- """
- Inference images: Extract matting on images.
- Example:
- python inference_images.py \
- --model-type mattingrefine \
- --model-backbone resnet50 \
- --model-backbone-scale 0.25 \
- --model-refine-mode sampling \
- --model-refine-sample-pixels 80000 \
- --model-checkpoint "PATH_TO_CHECKPOINT" \
- --images-src "PATH_TO_IMAGES_SRC_DIR" \
- --images-bgr "PATH_TO_IMAGES_BGR_DIR" \
- --output-dir "PATH_TO_OUTPUT_DIR" \
- --output-type com fgr pha
- """
- import argparse
- import torch
- import os
- import shutil
- from torch.nn import functional as F
- from torch.utils.data import DataLoader
- from torchvision import transforms as T
- from torchvision.transforms.functional import to_pil_image
- from threading import Thread
- from tqdm import tqdm
- from dataset import ImagesDataset, ZipDataset
- from dataset import augmentation as A
- from model import MattingBase, MattingRefine
- from inference_utils import HomographicAlignment
- # --------------- Arguments ---------------
- parser = argparse.ArgumentParser(description='Inference images')
- parser.add_argument('--model-type', type=str, required=True, choices=['mattingbase', 'mattingrefine'])
- parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2'])
- parser.add_argument('--model-backbone-scale', type=float, default=0.25)
- parser.add_argument('--model-checkpoint', type=str, required=True)
- parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
- parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000)
- parser.add_argument('--model-refine-threshold', type=float, default=0.7)
- parser.add_argument('--model-refine-kernel-size', type=int, default=3)
- parser.add_argument('--images-src', type=str, required=True)
- parser.add_argument('--images-bgr', type=str, required=True)
- parser.add_argument('--preprocess-alignment', action='store_true')
- parser.add_argument('--output-dir', type=str, required=True)
- parser.add_argument('--output-types', type=str, required=True, nargs='+', choices=['com', 'pha', 'fgr', 'err', 'ref'])
- parser.add_argument('-y', action='store_true')
- args = parser.parse_args()
- assert 'err' not in args.output_types or args.model_type in ['mattingbase', 'mattingrefine'], \
- 'Only mattingbase and mattingrefine support err output'
- assert 'ref' not in args.output_types or args.model_type in ['mattingrefine'], \
- 'Only mattingrefine support ref output'
- # --------------- Main ---------------
- # Load model
- if args.model_type == 'mattingbase':
- model = MattingBase(args.model_backbone)
- if args.model_type == 'mattingrefine':
- model = MattingRefine(
- args.model_backbone,
- args.model_backbone_scale,
- args.model_refine_mode,
- args.model_refine_sample_pixels,
- args.model_refine_threshold,
- args.model_refine_kernel_size)
- model = model.cuda().eval()
- model.load_state_dict(torch.load(args.model_checkpoint), strict=False)
- # Load images
- dataset = ZipDataset([
- ImagesDataset(args.images_src),
- ImagesDataset(args.images_bgr),
- ], assert_equal_length=True, transforms=A.PairCompose([
- HomographicAlignment() if args.preprocess_alignment else A.PairApply(nn.Identity()),
- A.PairApply(T.ToTensor)
- ]))
- dataloader = DataLoader(dataset, batch_size=1, num_workers=8, pin_memory=True)
- # Create output directory
- if os.path.exists(args.output_dir):
- if args.y or input(f'Directory {args.output_dir} already exists. Override? [Y/N]: ').lower() == 'y':
- shutil.rmtree(args.output_dir)
- else:
- exit()
- for output_type in args.output_types:
- os.makedirs(os.path.join(args.output_dir, output_type))
-
- # Worker function
- def writer(img, path):
- img = to_pil_image(img[0].cpu())
- img.save(path)
-
-
- # Conversion loop
- with torch.no_grad():
- for i, (src, bgr) in enumerate(tqdm(dataloader)):
- filename = dataset.datasets[0].filenames[i]
- src = src.cuda(non_blocking=True)
- bgr = bgr.cuda(non_blocking=True)
-
- if args.model_type == 'mattingbase':
- pha, fgr, err, _ = model(src, bgr)
- elif args.model_type == 'mattingrefine':
- pha, fgr, _, _, err, ref = model(src, bgr)
- elif args.model_type == 'mattingbm':
- pha, fgr = model(src, bgr)
-
- if 'com' in args.output_types:
- com = torch.cat([fgr * pha.ne(0), pha], dim=1)
- Thread(target=writer, args=(com, filename.replace(args.images_src, os.path.join(args.output_dir, 'com')).replace('.jpg', '.png'))).start()
- if 'pha' in args.output_types:
- Thread(target=writer, args=(pha, filename.replace(args.images_src, os.path.join(args.output_dir, 'pha')).replace('.png', '.jpg'))).start()
- if 'fgr' in args.output_types:
- Thread(target=writer, args=(fgr, filename.replace(args.images_src, os.path.join(args.output_dir, 'fgr')).replace('.png', '.jpg'))).start()
- if 'err' in args.output_types:
- err = F.interpolate(err, src.shape[2:], mode='bilinear', align_corners=False)
- Thread(target=writer, args=(err, filename.replace(args.images_src, os.path.join(args.output_dir, 'err')).replace('.png', '.jpg'))).start()
- if 'ref' in args.output_types:
- ref = F.interpolate(ref, src.shape[2:], mode='nearest')
- Thread(target=writer, args=(ref, filename.replace(args.images_src, os.path.join(args.output_dir, 'ref')).replace('.png', '.jpg'))).start()
|