""" Inference Speed Test Example: Run inference on random noise input for fixed computation setting. (i.e. mode in ['full', 'sampling']) python inference_speed_test.py \ --model-type mattingrefine \ --model-backbone resnet50 \ --model-backbone-scale 0.25 \ --model-refine-mode sampling \ --model-refine-sample-pixels 80000 \ --batch-size 1 \ --resolution 1920 1080 \ --backend pytorch \ --precision float32 Run inference on provided image input for dynamic computation setting. (i.e. mode in ['thresholding']) python inference_speed_test.py \ --model-type mattingrefine \ --model-backbone resnet50 \ --model-backbone-scale 0.25 \ --model-checkpoint "PATH_TO_CHECKPOINT" \ --model-refine-mode thresholding \ --model-refine-threshold 0.7 \ --batch-size 1 \ --backend pytorch \ --precision float32 \ --image-src "PATH_TO_IMAGE_SRC" \ --image-bgr "PATH_TO_IMAGE_BGR" """ import argparse import torch from torchvision.transforms.functional import to_tensor from tqdm import tqdm from PIL import Image from model import MattingBase, MattingRefine # --------------- Arguments --------------- parser = argparse.ArgumentParser() parser.add_argument('--model-type', type=str, required=True, choices=['mattingbase', 'mattingrefine']) parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2']) parser.add_argument('--model-backbone-scale', type=float, default=0.25) parser.add_argument('--model-checkpoint', type=str, default=None) parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding']) parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000) parser.add_argument('--model-refine-threshold', type=float, default=0.7) parser.add_argument('--model-refine-kernel-size', type=int, default=3) parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--resolution', type=int, default=None, nargs=2) parser.add_argument('--precision', type=str, default='float32', choices=['float32', 'float16']) parser.add_argument('--backend', type=str, default='pytorch', choices=['pytorch', 'torchscript']) parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda') parser.add_argument('--image-src', type=str, default=None) parser.add_argument('--image-bgr', type=str, default=None) args = parser.parse_args() assert type(args.image_src) == type(args.image_bgr), 'Image source and background must be provided together.' assert (not args.image_src) != (not args.resolution), 'Must provide either a resolution or an image and not both.' # --------------- Run Loop --------------- device = torch.device(args.device) # Load model if args.model_type == 'mattingbase': model = MattingBase(args.model_backbone) if args.model_type == 'mattingrefine': model = MattingRefine( args.model_backbone, args.model_backbone_scale, args.model_refine_mode, args.model_refine_sample_pixels, args.model_refine_threshold, args.model_refine_kernel_size, refine_prevent_oversampling=False) if args.model_checkpoint: model.load_state_dict(torch.load(args.model_checkpoint), strict=False) if args.precision == 'float32': precision = torch.float32 else: precision = torch.float16 if args.backend == 'torchscript': model = torch.jit.script(model) model = model.eval().to(device=device, dtype=precision) # Load data if not args.image_src: src = torch.rand((args.batch_size, 3, *args.resolution[::-1]), device=device, dtype=precision) bgr = torch.rand((args.batch_size, 3, *args.resolution[::-1]), device=device, dtype=precision) else: src = to_tensor(Image.open(args.image_src)).unsqueeze(0).repeat(args.batch_size, 1, 1, 1).to(device=device, dtype=precision) bgr = to_tensor(Image.open(args.image_bgr)).unsqueeze(0).repeat(args.batch_size, 1, 1, 1).to(device=device, dtype=precision) # Loop with torch.no_grad(): for _ in tqdm(range(1000)): model(src, bgr)