|
@@ -1,812 +0,0 @@
|
|
|
-library ieee;
|
|
|
-use ieee.std_logic_1164.all;
|
|
|
-use ieee.numeric_std.all;
|
|
|
-use work.myPackage.ALL;
|
|
|
-
|
|
|
-entity neuron_v1_0_S00_AXI is
|
|
|
- generic (
|
|
|
- -- Users to add parameters here
|
|
|
-
|
|
|
- -- User parameters ends
|
|
|
- -- Do not modify the parameters beyond this line
|
|
|
-
|
|
|
- -- Width of S_AXI data bus
|
|
|
- C_S_AXI_DATA_WIDTH : integer := 32;
|
|
|
- -- Width of S_AXI address bus
|
|
|
- C_S_AXI_ADDR_WIDTH : integer := 7
|
|
|
- );
|
|
|
- port (
|
|
|
- -- Users to add ports here
|
|
|
-
|
|
|
- -- User ports ends
|
|
|
- -- Do not modify the ports beyond this line
|
|
|
-
|
|
|
- -- Global Clock Signal
|
|
|
- S_AXI_ACLK : in std_logic;
|
|
|
- -- Global Reset Signal. This Signal is Active LOW
|
|
|
- S_AXI_ARESETN : in std_logic;
|
|
|
- -- Write address (issued by master, acceped by Slave)
|
|
|
- S_AXI_AWADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
|
|
|
- -- Write channel Protection type. This signal indicates the
|
|
|
- -- privilege and security level of the transaction, and whether
|
|
|
- -- the transaction is a data access or an instruction access.
|
|
|
- S_AXI_AWPROT : in std_logic_vector(2 downto 0);
|
|
|
- -- Write address valid. This signal indicates that the master signaling
|
|
|
- -- valid write address and control information.
|
|
|
- S_AXI_AWVALID : in std_logic;
|
|
|
- -- Write address ready. This signal indicates that the slave is ready
|
|
|
- -- to accept an address and associated control signals.
|
|
|
- S_AXI_AWREADY : out std_logic;
|
|
|
- -- Write data (issued by master, acceped by Slave)
|
|
|
- S_AXI_WDATA : in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- -- Write strobes. This signal indicates which byte lanes hold
|
|
|
- -- valid data. There is one write strobe bit for each eight
|
|
|
- -- bits of the write data bus.
|
|
|
- S_AXI_WSTRB : in std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0);
|
|
|
- -- Write valid. This signal indicates that valid write
|
|
|
- -- data and strobes are available.
|
|
|
- S_AXI_WVALID : in std_logic;
|
|
|
- -- Write ready. This signal indicates that the slave
|
|
|
- -- can accept the write data.
|
|
|
- S_AXI_WREADY : out std_logic;
|
|
|
- -- Write response. This signal indicates the status
|
|
|
- -- of the write transaction.
|
|
|
- S_AXI_BRESP : out std_logic_vector(1 downto 0);
|
|
|
- -- Write response valid. This signal indicates that the channel
|
|
|
- -- is signaling a valid write response.
|
|
|
- S_AXI_BVALID : out std_logic;
|
|
|
- -- Response ready. This signal indicates that the master
|
|
|
- -- can accept a write response.
|
|
|
- S_AXI_BREADY : in std_logic;
|
|
|
- -- Read address (issued by master, acceped by Slave)
|
|
|
- S_AXI_ARADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
|
|
|
- -- Protection type. This signal indicates the privilege
|
|
|
- -- and security level of the transaction, and whether the
|
|
|
- -- transaction is a data access or an instruction access.
|
|
|
- S_AXI_ARPROT : in std_logic_vector(2 downto 0);
|
|
|
- -- Read address valid. This signal indicates that the channel
|
|
|
- -- is signaling valid read address and control information.
|
|
|
- S_AXI_ARVALID : in std_logic;
|
|
|
- -- Read address ready. This signal indicates that the slave is
|
|
|
- -- ready to accept an address and associated control signals.
|
|
|
- S_AXI_ARREADY : out std_logic;
|
|
|
- -- Read data (issued by slave)
|
|
|
- S_AXI_RDATA : out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- -- Read response. This signal indicates the status of the
|
|
|
- -- read transfer.
|
|
|
- S_AXI_RRESP : out std_logic_vector(1 downto 0);
|
|
|
- -- Read valid. This signal indicates that the channel is
|
|
|
- -- signaling the required read data.
|
|
|
- S_AXI_RVALID : out std_logic;
|
|
|
- -- Read ready. This signal indicates that the master can
|
|
|
- -- accept the read data and response information.
|
|
|
- S_AXI_RREADY : in std_logic
|
|
|
- );
|
|
|
-end neuron_v1_0_S00_AXI;
|
|
|
-
|
|
|
-architecture arch_imp of neuron_v1_0_S00_AXI is
|
|
|
-
|
|
|
- -- AXI4LITE signals
|
|
|
- signal axi_awaddr : std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
|
|
|
- signal axi_awready : std_logic;
|
|
|
- signal axi_wready : std_logic;
|
|
|
- signal axi_bresp : std_logic_vector(1 downto 0);
|
|
|
- signal axi_bvalid : std_logic;
|
|
|
- signal axi_araddr : std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
|
|
|
- signal axi_arready : std_logic;
|
|
|
- signal axi_rdata : std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal axi_rresp : std_logic_vector(1 downto 0);
|
|
|
- signal axi_rvalid : std_logic;
|
|
|
-
|
|
|
- -- Example-specific design signals
|
|
|
- -- local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
|
|
|
- -- ADDR_LSB is used for addressing 32/64 bit registers/memories
|
|
|
- -- ADDR_LSB = 2 for 32 bits (n downto 2)
|
|
|
- -- ADDR_LSB = 3 for 64 bits (n downto 3)
|
|
|
- constant ADDR_LSB : integer := (C_S_AXI_DATA_WIDTH/32)+ 1;
|
|
|
- constant OPT_MEM_ADDR_BITS : integer := 4;
|
|
|
- ------------------------------------------------
|
|
|
- ---- Signals for user logic register space example
|
|
|
- --------------------------------------------------
|
|
|
- ---- Number of Slave Registers 32
|
|
|
- signal slv_reg0 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg1 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg2 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg3 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg4 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg5 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg6 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg7 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg8 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg9 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg10 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg11 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg12 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg13 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg14 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg15 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg16 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg17 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg18 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg19 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg20 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg21 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg22 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg23 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg24 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg25 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg26 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg27 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg28 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg29 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg30 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg31 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal slv_reg_rden : std_logic;
|
|
|
- signal slv_reg_wren : std_logic;
|
|
|
- signal reg_data_out :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
|
|
|
- signal byte_index : integer;
|
|
|
- signal aw_en : std_logic;
|
|
|
-
|
|
|
-
|
|
|
- component mac is
|
|
|
- port (
|
|
|
- inputs : in dataVector;
|
|
|
- weights : in dataVector;
|
|
|
- bias : in dataType;
|
|
|
- outp : out dataType;
|
|
|
- clk: in STD_LOGIC);
|
|
|
- end component;
|
|
|
-
|
|
|
- component sigmoid is
|
|
|
- port (
|
|
|
- inp : in dataType;
|
|
|
- clk : in std_logic;
|
|
|
- outp : out dataType);
|
|
|
- end component;
|
|
|
-
|
|
|
- signal var1 : dataType;
|
|
|
- signal calc_outp: dataType;
|
|
|
- signal inputs : dataVector;
|
|
|
- signal weights : dataVector;
|
|
|
-
|
|
|
-begin
|
|
|
- -- I/O Connections assignments
|
|
|
-
|
|
|
- S_AXI_AWREADY <= axi_awready;
|
|
|
- S_AXI_WREADY <= axi_wready;
|
|
|
- S_AXI_BRESP <= axi_bresp;
|
|
|
- S_AXI_BVALID <= axi_bvalid;
|
|
|
- S_AXI_ARREADY <= axi_arready;
|
|
|
- S_AXI_RDATA <= axi_rdata;
|
|
|
- S_AXI_RRESP <= axi_rresp;
|
|
|
- S_AXI_RVALID <= axi_rvalid;
|
|
|
- -- Implement axi_awready generation
|
|
|
- -- axi_awready is asserted for one S_AXI_ACLK clock cycle when both
|
|
|
- -- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
|
|
|
- -- de-asserted when reset is low.
|
|
|
-
|
|
|
- process (S_AXI_ACLK)
|
|
|
- begin
|
|
|
- if rising_edge(S_AXI_ACLK) then
|
|
|
- if S_AXI_ARESETN = '0' then
|
|
|
- axi_awready <= '0';
|
|
|
- aw_en <= '1';
|
|
|
- else
|
|
|
- if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' and aw_en = '1') then
|
|
|
- -- slave is ready to accept write address when
|
|
|
- -- there is a valid write address and write data
|
|
|
- -- on the write address and data bus. This design
|
|
|
- -- expects no outstanding transactions.
|
|
|
- axi_awready <= '1';
|
|
|
- aw_en <= '0';
|
|
|
- elsif (S_AXI_BREADY = '1' and axi_bvalid = '1') then
|
|
|
- aw_en <= '1';
|
|
|
- axi_awready <= '0';
|
|
|
- else
|
|
|
- axi_awready <= '0';
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end process;
|
|
|
-
|
|
|
- -- Implement axi_awaddr latching
|
|
|
- -- This process is used to latch the address when both
|
|
|
- -- S_AXI_AWVALID and S_AXI_WVALID are valid.
|
|
|
-
|
|
|
- process (S_AXI_ACLK)
|
|
|
- begin
|
|
|
- if rising_edge(S_AXI_ACLK) then
|
|
|
- if S_AXI_ARESETN = '0' then
|
|
|
- axi_awaddr <= (others => '0');
|
|
|
- else
|
|
|
- if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' and aw_en = '1') then
|
|
|
- -- Write Address latching
|
|
|
- axi_awaddr <= S_AXI_AWADDR;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end process;
|
|
|
-
|
|
|
- -- Implement axi_wready generation
|
|
|
- -- axi_wready is asserted for one S_AXI_ACLK clock cycle when both
|
|
|
- -- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
|
|
|
- -- de-asserted when reset is low.
|
|
|
-
|
|
|
- process (S_AXI_ACLK)
|
|
|
- begin
|
|
|
- if rising_edge(S_AXI_ACLK) then
|
|
|
- if S_AXI_ARESETN = '0' then
|
|
|
- axi_wready <= '0';
|
|
|
- else
|
|
|
- if (axi_wready = '0' and S_AXI_WVALID = '1' and S_AXI_AWVALID = '1' and aw_en = '1') then
|
|
|
- -- slave is ready to accept write data when
|
|
|
- -- there is a valid write address and write data
|
|
|
- -- on the write address and data bus. This design
|
|
|
- -- expects no outstanding transactions.
|
|
|
- axi_wready <= '1';
|
|
|
- else
|
|
|
- axi_wready <= '0';
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end process;
|
|
|
-
|
|
|
- -- Implement memory mapped register select and write logic generation
|
|
|
- -- The write data is accepted and written to memory mapped registers when
|
|
|
- -- axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
|
|
|
- -- select byte enables of slave registers while writing.
|
|
|
- -- These registers are cleared when reset (active low) is applied.
|
|
|
- -- Slave register write enable is asserted when valid address and data are available
|
|
|
- -- and the slave is ready to accept the write address and write data.
|
|
|
- slv_reg_wren <= axi_wready and S_AXI_WVALID and axi_awready and S_AXI_AWVALID ;
|
|
|
-
|
|
|
- process (S_AXI_ACLK)
|
|
|
- variable loc_addr :std_logic_vector(OPT_MEM_ADDR_BITS downto 0);
|
|
|
- begin
|
|
|
- if rising_edge(S_AXI_ACLK) then
|
|
|
- if S_AXI_ARESETN = '0' then
|
|
|
- slv_reg0 <= (others => '0');
|
|
|
- slv_reg1 <= (others => '0');
|
|
|
- slv_reg2 <= (others => '0');
|
|
|
- slv_reg3 <= (others => '0');
|
|
|
- slv_reg4 <= (others => '0');
|
|
|
- slv_reg5 <= (others => '0');
|
|
|
- slv_reg6 <= (others => '0');
|
|
|
- slv_reg7 <= (others => '0');
|
|
|
- slv_reg8 <= (others => '0');
|
|
|
- slv_reg9 <= (others => '0');
|
|
|
- slv_reg10 <= (others => '0');
|
|
|
- slv_reg11 <= (others => '0');
|
|
|
- slv_reg12 <= (others => '0');
|
|
|
- slv_reg13 <= (others => '0');
|
|
|
- slv_reg14 <= (others => '0');
|
|
|
- slv_reg15 <= (others => '0');
|
|
|
- slv_reg16 <= (others => '0');
|
|
|
- slv_reg17 <= (others => '0');
|
|
|
- slv_reg18 <= (others => '0');
|
|
|
- slv_reg19 <= (others => '0');
|
|
|
- slv_reg20 <= (others => '0');
|
|
|
- slv_reg21 <= (others => '0');
|
|
|
- slv_reg22 <= (others => '0');
|
|
|
- slv_reg23 <= (others => '0');
|
|
|
- slv_reg24 <= (others => '0');
|
|
|
- slv_reg25 <= (others => '0');
|
|
|
- slv_reg26 <= (others => '0');
|
|
|
- slv_reg27 <= (others => '0');
|
|
|
- slv_reg28 <= (others => '0');
|
|
|
- slv_reg29 <= (others => '0');
|
|
|
- slv_reg30 <= (others => '0');
|
|
|
- slv_reg31 <= (others => '0');
|
|
|
- else
|
|
|
- loc_addr := axi_awaddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB);
|
|
|
- if (slv_reg_wren = '1') then
|
|
|
- case loc_addr is
|
|
|
- when b"00000" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 0
|
|
|
- slv_reg0(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"00001" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 1
|
|
|
- slv_reg1(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"00010" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 2
|
|
|
- slv_reg2(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"00011" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 3
|
|
|
- slv_reg3(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"00100" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 4
|
|
|
- slv_reg4(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"00101" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 5
|
|
|
- slv_reg5(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"00110" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 6
|
|
|
- slv_reg6(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"00111" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 7
|
|
|
- slv_reg7(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"01000" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 8
|
|
|
- slv_reg8(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"01001" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 9
|
|
|
- slv_reg9(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"01010" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 10
|
|
|
- slv_reg10(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"01011" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 11
|
|
|
- slv_reg11(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"01100" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 12
|
|
|
- slv_reg12(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"01101" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 13
|
|
|
- slv_reg13(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"01110" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 14
|
|
|
- slv_reg14(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"01111" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 15
|
|
|
- slv_reg15(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"10000" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 16
|
|
|
- slv_reg16(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"10001" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 17
|
|
|
- slv_reg17(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"10010" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 18
|
|
|
- slv_reg18(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"10011" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 19
|
|
|
- slv_reg19(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"10100" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 20
|
|
|
- slv_reg20(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"10101" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 21
|
|
|
- slv_reg21(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"10110" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 22
|
|
|
- slv_reg22(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"10111" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 23
|
|
|
- slv_reg23(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"11000" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 24
|
|
|
- slv_reg24(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"11001" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 25
|
|
|
- slv_reg25(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"11010" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 26
|
|
|
- slv_reg26(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"11011" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 27
|
|
|
- slv_reg27(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"11100" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 28
|
|
|
- slv_reg28(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"11101" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 29
|
|
|
- slv_reg29(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"11110" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 30
|
|
|
- slv_reg30(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when b"11111" =>
|
|
|
- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
|
|
|
- if ( S_AXI_WSTRB(byte_index) = '1' ) then
|
|
|
- -- Respective byte enables are asserted as per write strobes
|
|
|
- -- slave registor 31
|
|
|
- slv_reg31(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
|
|
|
- end if;
|
|
|
- end loop;
|
|
|
- when others =>
|
|
|
- slv_reg0 <= slv_reg0;
|
|
|
- slv_reg1 <= slv_reg1;
|
|
|
- slv_reg2 <= slv_reg2;
|
|
|
- slv_reg3 <= slv_reg3;
|
|
|
- slv_reg4 <= slv_reg4;
|
|
|
- slv_reg5 <= slv_reg5;
|
|
|
- slv_reg6 <= slv_reg6;
|
|
|
- slv_reg7 <= slv_reg7;
|
|
|
- slv_reg8 <= slv_reg8;
|
|
|
- slv_reg9 <= slv_reg9;
|
|
|
- slv_reg10 <= slv_reg10;
|
|
|
- slv_reg11 <= slv_reg11;
|
|
|
- slv_reg12 <= slv_reg12;
|
|
|
- slv_reg13 <= slv_reg13;
|
|
|
- slv_reg14 <= slv_reg14;
|
|
|
- slv_reg15 <= slv_reg15;
|
|
|
- slv_reg16 <= slv_reg16;
|
|
|
- slv_reg17 <= slv_reg17;
|
|
|
- slv_reg18 <= slv_reg18;
|
|
|
- slv_reg19 <= slv_reg19;
|
|
|
- slv_reg20 <= slv_reg20;
|
|
|
- slv_reg21 <= slv_reg21;
|
|
|
- slv_reg22 <= slv_reg22;
|
|
|
- slv_reg23 <= slv_reg23;
|
|
|
- slv_reg24 <= slv_reg24;
|
|
|
- slv_reg25 <= slv_reg25;
|
|
|
- slv_reg26 <= slv_reg26;
|
|
|
- slv_reg27 <= slv_reg27;
|
|
|
- slv_reg28 <= slv_reg28;
|
|
|
- slv_reg29 <= slv_reg29;
|
|
|
- slv_reg30 <= slv_reg30;
|
|
|
- slv_reg31 <= slv_reg31;
|
|
|
- end case;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end process;
|
|
|
-
|
|
|
- -- Implement write response logic generation
|
|
|
- -- The write response and response valid signals are asserted by the slave
|
|
|
- -- when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
|
|
|
- -- This marks the acceptance of address and indicates the status of
|
|
|
- -- write transaction.
|
|
|
-
|
|
|
- process (S_AXI_ACLK)
|
|
|
- begin
|
|
|
- if rising_edge(S_AXI_ACLK) then
|
|
|
- if S_AXI_ARESETN = '0' then
|
|
|
- axi_bvalid <= '0';
|
|
|
- axi_bresp <= "00"; --need to work more on the responses
|
|
|
- else
|
|
|
- if (axi_awready = '1' and S_AXI_AWVALID = '1' and axi_wready = '1' and S_AXI_WVALID = '1' and axi_bvalid = '0' ) then
|
|
|
- axi_bvalid <= '1';
|
|
|
- axi_bresp <= "00";
|
|
|
- elsif (S_AXI_BREADY = '1' and axi_bvalid = '1') then --check if bready is asserted while bvalid is high)
|
|
|
- axi_bvalid <= '0'; -- (there is a possibility that bready is always asserted high)
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end process;
|
|
|
-
|
|
|
- -- Implement axi_arready generation
|
|
|
- -- axi_arready is asserted for one S_AXI_ACLK clock cycle when
|
|
|
- -- S_AXI_ARVALID is asserted. axi_awready is
|
|
|
- -- de-asserted when reset (active low) is asserted.
|
|
|
- -- The read address is also latched when S_AXI_ARVALID is
|
|
|
- -- asserted. axi_araddr is reset to zero on reset assertion.
|
|
|
-
|
|
|
- process (S_AXI_ACLK)
|
|
|
- begin
|
|
|
- if rising_edge(S_AXI_ACLK) then
|
|
|
- if S_AXI_ARESETN = '0' then
|
|
|
- axi_arready <= '0';
|
|
|
- axi_araddr <= (others => '1');
|
|
|
- else
|
|
|
- if (axi_arready = '0' and S_AXI_ARVALID = '1') then
|
|
|
- -- indicates that the slave has acceped the valid read address
|
|
|
- axi_arready <= '1';
|
|
|
- -- Read Address latching
|
|
|
- axi_araddr <= S_AXI_ARADDR;
|
|
|
- else
|
|
|
- axi_arready <= '0';
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end process;
|
|
|
-
|
|
|
- -- Implement axi_arvalid generation
|
|
|
- -- axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
|
|
|
- -- S_AXI_ARVALID and axi_arready are asserted. The slave registers
|
|
|
- -- data are available on the axi_rdata bus at this instance. The
|
|
|
- -- assertion of axi_rvalid marks the validity of read data on the
|
|
|
- -- bus and axi_rresp indicates the status of read transaction.axi_rvalid
|
|
|
- -- is deasserted on reset (active low). axi_rresp and axi_rdata are
|
|
|
- -- cleared to zero on reset (active low).
|
|
|
- process (S_AXI_ACLK)
|
|
|
- begin
|
|
|
- if rising_edge(S_AXI_ACLK) then
|
|
|
- if S_AXI_ARESETN = '0' then
|
|
|
- axi_rvalid <= '0';
|
|
|
- axi_rresp <= "00";
|
|
|
- else
|
|
|
- if (axi_arready = '1' and S_AXI_ARVALID = '1' and axi_rvalid = '0') then
|
|
|
- -- Valid read data is available at the read data bus
|
|
|
- axi_rvalid <= '1';
|
|
|
- axi_rresp <= "00"; -- 'OKAY' response
|
|
|
- elsif (axi_rvalid = '1' and S_AXI_RREADY = '1') then
|
|
|
- -- Read data is accepted by the master
|
|
|
- axi_rvalid <= '0';
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end process;
|
|
|
-
|
|
|
- -- Implement memory mapped register select and read logic generation
|
|
|
- -- Slave register read enable is asserted when valid address is available
|
|
|
- -- and the slave is ready to accept the read address.
|
|
|
- slv_reg_rden <= axi_arready and S_AXI_ARVALID and (not axi_rvalid) ;
|
|
|
-
|
|
|
- process (calc_outp, slv_reg1, slv_reg2, slv_reg3, slv_reg4, slv_reg5, slv_reg6, slv_reg7, slv_reg8, slv_reg9, slv_reg10, slv_reg11, slv_reg12, slv_reg13, slv_reg14, slv_reg15, slv_reg16, slv_reg17, slv_reg18, slv_reg19, slv_reg20, slv_reg21, slv_reg22, slv_reg23, slv_reg24, slv_reg25, slv_reg26, slv_reg27, slv_reg28, slv_reg29, slv_reg30, slv_reg31, axi_araddr, S_AXI_ARESETN, slv_reg_rden)
|
|
|
- variable loc_addr :std_logic_vector(OPT_MEM_ADDR_BITS downto 0);
|
|
|
- begin
|
|
|
- -- Address decoding for reading registers
|
|
|
- loc_addr := axi_araddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB);
|
|
|
- case loc_addr is
|
|
|
- when b"00000" =>
|
|
|
- reg_data_out <= calc_outp;
|
|
|
- when b"00001" =>
|
|
|
- reg_data_out <= slv_reg1;
|
|
|
- when b"00010" =>
|
|
|
- reg_data_out <= slv_reg2;
|
|
|
- when b"00011" =>
|
|
|
- reg_data_out <= slv_reg3;
|
|
|
- when b"00100" =>
|
|
|
- reg_data_out <= slv_reg4;
|
|
|
- when b"00101" =>
|
|
|
- reg_data_out <= slv_reg5;
|
|
|
- when b"00110" =>
|
|
|
- reg_data_out <= slv_reg6;
|
|
|
- when b"00111" =>
|
|
|
- reg_data_out <= slv_reg7;
|
|
|
- when b"01000" =>
|
|
|
- reg_data_out <= slv_reg8;
|
|
|
- when b"01001" =>
|
|
|
- reg_data_out <= slv_reg9;
|
|
|
- when b"01010" =>
|
|
|
- reg_data_out <= slv_reg10;
|
|
|
- when b"01011" =>
|
|
|
- reg_data_out <= slv_reg11;
|
|
|
- when b"01100" =>
|
|
|
- reg_data_out <= slv_reg12;
|
|
|
- when b"01101" =>
|
|
|
- reg_data_out <= slv_reg13;
|
|
|
- when b"01110" =>
|
|
|
- reg_data_out <= slv_reg14;
|
|
|
- when b"01111" =>
|
|
|
- reg_data_out <= slv_reg15;
|
|
|
- when b"10000" =>
|
|
|
- reg_data_out <= slv_reg16;
|
|
|
- when b"10001" =>
|
|
|
- reg_data_out <= slv_reg17;
|
|
|
- when b"10010" =>
|
|
|
- reg_data_out <= slv_reg18;
|
|
|
- when b"10011" =>
|
|
|
- reg_data_out <= slv_reg19;
|
|
|
- when b"10100" =>
|
|
|
- reg_data_out <= slv_reg20;
|
|
|
- when b"10101" =>
|
|
|
- reg_data_out <= slv_reg21;
|
|
|
- when b"10110" =>
|
|
|
- reg_data_out <= slv_reg22;
|
|
|
- when b"10111" =>
|
|
|
- reg_data_out <= slv_reg23;
|
|
|
- when b"11000" =>
|
|
|
- reg_data_out <= slv_reg24;
|
|
|
- when b"11001" =>
|
|
|
- reg_data_out <= slv_reg25;
|
|
|
- when b"11010" =>
|
|
|
- reg_data_out <= slv_reg26;
|
|
|
- when b"11011" =>
|
|
|
- reg_data_out <= slv_reg27;
|
|
|
- when b"11100" =>
|
|
|
- reg_data_out <= slv_reg28;
|
|
|
- when b"11101" =>
|
|
|
- reg_data_out <= slv_reg29;
|
|
|
- when b"11110" =>
|
|
|
- reg_data_out <= slv_reg30;
|
|
|
- when b"11111" =>
|
|
|
- reg_data_out <= slv_reg31;
|
|
|
- when others =>
|
|
|
- reg_data_out <= (others => '0');
|
|
|
- end case;
|
|
|
- end process;
|
|
|
-
|
|
|
- -- Output register or memory read data
|
|
|
- process( S_AXI_ACLK ) is
|
|
|
- begin
|
|
|
- if (rising_edge (S_AXI_ACLK)) then
|
|
|
- if ( S_AXI_ARESETN = '0' ) then
|
|
|
- axi_rdata <= (others => '0');
|
|
|
- else
|
|
|
- if (slv_reg_rden = '1') then
|
|
|
- -- When there is a valid read address (S_AXI_ARVALID) with
|
|
|
- -- acceptance of read address by the slave (axi_arready),
|
|
|
- -- output the read dada
|
|
|
- -- Read address mux
|
|
|
- axi_rdata <= reg_data_out; -- register read data
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end if;
|
|
|
- end process;
|
|
|
-
|
|
|
-
|
|
|
- -- Add user logic here
|
|
|
- mac1: mac port map (
|
|
|
- inputs => inputs,
|
|
|
- weights => weights,
|
|
|
- bias => slv_reg20,
|
|
|
- outp => var1,
|
|
|
- clk => S_AXI_ACLK
|
|
|
- );
|
|
|
-
|
|
|
- sig1: sigmoid port map (
|
|
|
- inp => var1,
|
|
|
- clk => S_AXI_ACLK,
|
|
|
- outp => calc_outp
|
|
|
- );
|
|
|
-
|
|
|
- inputs (0) <= slv_reg0;
|
|
|
- weights(0) <= slv_reg1;
|
|
|
- inputs (1) <= slv_reg2;
|
|
|
- weights(1) <= slv_reg3;
|
|
|
- inputs (2) <= slv_reg4;
|
|
|
- weights(2) <= slv_reg5;
|
|
|
- inputs (3) <= slv_reg6;
|
|
|
- weights(3) <= slv_reg7;
|
|
|
- inputs (4) <= slv_reg8;
|
|
|
- weights(4) <= slv_reg9;
|
|
|
- inputs (5) <= slv_reg10;
|
|
|
- weights(5) <= slv_reg11;
|
|
|
- inputs (6) <= slv_reg12;
|
|
|
- weights(6) <= slv_reg13;
|
|
|
- inputs (7) <= slv_reg14;
|
|
|
- weights(7) <= slv_reg15;
|
|
|
- inputs (8) <= slv_reg16;
|
|
|
- weights(8) <= slv_reg17;
|
|
|
- inputs (9) <= slv_reg18;
|
|
|
- weights(9) <= slv_reg19;
|
|
|
-
|
|
|
- -- User logic ends
|
|
|
-
|
|
|
-end arch_imp;
|