123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- import tensorflow as tf
- import tensorflow.keras as keras
- from tensorflow.keras import layers
- from tensorflow.keras.layers import Input, Embedding, LSTM, Dense, Dropout, Flatten, MaxPooling2D, Conv2D
- from tensorflow.keras.models import Model, Sequential
- from tensorflow.keras.datasets import mnist
- from tensorflow.keras.utils import plot_model, to_categorical
- import numpy as np
- from IPython import embed
- my_matmul_module = tf.load_op_library('./matMul.so')
- batch_size = 128
- num_classes = 10
- epochs = 1 # 12
- # input image dimensions
- img_rows, img_cols = 28, 28
- # the data, split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
- x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
- input_shape = (img_rows, img_cols, 1)
- x_train = x_train.astype('float32')
- x_test = x_test.astype('float32')
- x_train /= 255
- x_test /= 255
- print('x_train shape:', x_train.shape)
- print(x_train.shape[0], 'train samples')
- print(x_test.shape[0], 'test samples')
- # convert class vectors to binary class matrices
- y_train = to_categorical(y_train, num_classes)
- y_test = to_categorical(y_test, num_classes)
- class Conv2DFPGA(layers.Layer):
- def __init__(self, kernel):
- super(Conv2DFPGA, self).__init__()
- self.kernel = kernel
- def call(self, inputs):
- ints = tf.dtypes.cast(inputs, dtype=tf.int32)
- outs = my_matmul_module.MyConv2D(input=ints, filter=ints)
- return tf.dtypes.cast(outs, dtype=tf.float32)
- class MyConv2D(layers.Conv2D):
- def __init__(self,
- filters,
- kernel_size,
- strides=(1, 1),
- padding='valid',
- data_format=None,
- dilation_rate=(1, 1),
- activation=None,
- use_bias=True,
- kernel_initializer='glorot_uniform',
- bias_initializer='zeros',
- kernel_regularizer=None,
- bias_regularizer=None,
- activity_regularizer=None,
- kernel_constraint=None,
- bias_constraint=None,
- **kwargs):
- super(MyConv2D, self).__init__(
- filters=filters,
- kernel_size=kernel_size,
- strides=strides,
- padding=padding,
- data_format=data_format,
- dilation_rate=dilation_rate,
- activation=activation,
- use_bias=use_bias,
- kernel_initializer=kernel_initializer,
- bias_initializer=bias_initializer,
- kernel_regularizer=kernel_regularizer,
- bias_regularizer=bias_regularizer,
- activity_regularizer=activity_regularizer,
- kernel_constraint=kernel_constraint,
- bias_constraint=bias_constraint,
- **kwargs)
- def call(self, inputs):
- #inputs.get_shape(),
- #filter_shape=self.kernel.shape,
- #dilation_rate=self.dilation_rate,
- #strides=self.strides,
- #padding=self._padding_op,
- #data_format=self._conv_op_data_format)
- #kernel.shape.ndims
- #inputs.get_shape().ndims
- if self.rank == 1 and inputs.get_shape(): #fpga restriction
- return my_matmul_module.MyConv2D(inputs, self.kernel)
- else:
- return super(MyConv2D, self).call(inputs)
- model = Sequential()
- model.add(MyConv2D(32, kernel_size=(3, 3),
- activation='relu',
- input_shape=input_shape))
- model.add(Conv2DFPGA([0,0]))
- model.add(Flatten())
- model.add(Dense(128, activation='relu'))
- model.add(Dropout(0.5))
- model.add(Dense(num_classes, activation='softmax'))
- model.compile(loss=keras.losses.categorical_crossentropy,
- optimizer=keras.optimizers.Adadelta(),
- metrics=['accuracy'])
-
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=epochs,
- verbose=1,
- validation_data=(x_test, y_test))
- score = model.evaluate(x_test, y_test, verbose=0)
- print('Test loss:', score[0])
- print('Test accuracy:', score[1])
- plot_model(model, to_file='model.png', expand_nested=True, show_shapes=True)
|