|
@@ -0,0 +1,88 @@
|
|
|
+import tensorflow as tf
|
|
|
+import tensorflow.keras as keras
|
|
|
+from keras import layers
|
|
|
+from keras.layers import Input, Embedding, LSTM, Dense, Dropout, Flatten, MaxPooling2D, Conv2D
|
|
|
+from keras.models import Model, Sequential
|
|
|
+from keras.datasets import mnist
|
|
|
+from keras.utils import plot_model, to_categorical
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+from IPython import embed
|
|
|
+
|
|
|
+
|
|
|
+batch_size = 128
|
|
|
+num_classes = 10
|
|
|
+epochs = 1 # 12
|
|
|
+
|
|
|
+# input image dimensions
|
|
|
+img_rows, img_cols = 28, 28
|
|
|
+
|
|
|
+# the data, split between train and test sets
|
|
|
+(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
|
|
+
|
|
|
+x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
|
|
|
+x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
|
|
|
+input_shape = (img_rows, img_cols, 1)
|
|
|
+
|
|
|
+x_train = x_train.astype('float32')
|
|
|
+x_test = x_test.astype('float32')
|
|
|
+x_train /= 255
|
|
|
+x_test /= 255
|
|
|
+print('x_train shape:', x_train.shape)
|
|
|
+print(x_train.shape[0], 'train samples')
|
|
|
+print(x_test.shape[0], 'test samples')
|
|
|
+
|
|
|
+# convert class vectors to binary class matrices
|
|
|
+y_train = to_categorical(y_train, num_classes)
|
|
|
+y_test = to_categorical(y_test, num_classes)
|
|
|
+
|
|
|
+
|
|
|
+class Linear(layers.Layer):
|
|
|
+
|
|
|
+ def __init__(self, units=32, input_dim=32):
|
|
|
+ super(Linear, self).__init__()
|
|
|
+ w_init = tf.random_normal_initializer()
|
|
|
+ self.w = tf.Variable(initial_value=w_init(shape=(input_dim, units),
|
|
|
+ dtype='float32'),
|
|
|
+ trainable=True)
|
|
|
+ b_init = tf.zeros_initializer()
|
|
|
+ self.b = tf.Variable(initial_value=b_init(shape=(units,),
|
|
|
+ dtype='float32'),
|
|
|
+ trainable=True)
|
|
|
+
|
|
|
+ def call(self, inputs):
|
|
|
+ print(inputs)
|
|
|
+ embed()
|
|
|
+ return tf.matmul(inputs, self.w) + self.b
|
|
|
+
|
|
|
+
|
|
|
+model = Sequential()
|
|
|
+model.add(Conv2D(32, kernel_size=(3, 3),
|
|
|
+ activation='relu',
|
|
|
+ input_shape=input_shape))
|
|
|
+model.add(Conv2D(64, (3, 3), activation='relu'))
|
|
|
+
|
|
|
+model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
|
+model.add(Dropout(0.25))
|
|
|
+model.add(Flatten())
|
|
|
+model.add(Dense(128, activation='relu'))
|
|
|
+model.add(Dropout(0.5))
|
|
|
+model.add(Dense(num_classes, activation='softmax'))
|
|
|
+
|
|
|
+model.add(Linear(10,10))
|
|
|
+
|
|
|
+
|
|
|
+model.compile(loss=keras.losses.categorical_crossentropy,
|
|
|
+ optimizer=keras.optimizers.Adadelta(),
|
|
|
+ metrics=['accuracy'])
|
|
|
+
|
|
|
+model.fit(x_train, y_train,
|
|
|
+ batch_size=batch_size,
|
|
|
+ epochs=epochs,
|
|
|
+ verbose=1,
|
|
|
+ validation_data=(x_test, y_test))
|
|
|
+score = model.evaluate(x_test, y_test, verbose=0)
|
|
|
+print('Test loss:', score[0])
|
|
|
+print('Test accuracy:', score[1])
|
|
|
+
|
|
|
+plot_model(model, to_file='model.png', expand_nested=True, show_shapes=True)
|